
NASA Contractor Report 3871 

Accelerated Viscoelastic 
Characterization of T3 00/5 2 08 
Graphite-Epoxy Laminates 

M. E. Tuttle and H. F. Brinson 

?•-!-> 

COOPERATIVE AGREEMENT NCC2-71 
MARCH 1985 

t ^- "  t  . •     ^" 

^214 0// 

l\l/>SA 
\--~ 

< /i 

%        i 



-- K - 

*HSG DI4 DROLS PROCESSING - LAST INPUT IGNORED 

*H56 DI4 DROLS PROCESSING - LAST INPUT IGNORED 

1  OF'  1 
tnDTIi DOES NOT HAVE THIS ITEK**» 

1 - AD NUHBER: D439296 
5 - CORPORATE AUTHOR; VIRGINIA POLYTECHNIC INST AND STATE UNr* 

BiACKSBURG OEPT 0' ENGINEERING SCIENCE AND MECHANICS 
UNCLASSIFIED TITLE:   ACCELERATED VISCOELASTIC CHARACTERIZATION 

OF T300/5208 GRAPHITE-EPOX' LAMINATES, 
--1C - PERSONAL AUTHORS: TUTTLE,^ E. ;ERINSON,h. T ; 
--11 - REPORT DATE:    HAR  , 1965 
-IC - PAGINATION:  233P 
-!4 - REPORT NUMBER:  VPI-E-S^- 
"15 - CONTRACT NUMBER: NCC2-71 
"18 - MONITOR ACRONYM: NASA 
"19 - MONITOR SERIES:  CR-3871 
-20 - REPORT CLASSIFICATION: UNCLASSIFIED 
"22 - LIMITATIONS (ALPHA):  APPROVED FOR PUBLIC RELEASE; DISTRIBUTION 

A, C A - ■' 

"33 - LIMITATION CODES: i 
--tnnt 

END OF DISPLAY LIST 

{{ENTER NEXT COMMAND)) 



NASA Contractor Report 3871 

Accelerated Viscoelastic 
Characterization of T300/5208 
Graphite-Epoxy Laminates 

M. E. Tuttle and H. F. Brinson 

Virginia Polytechnic Institute and State University 

Blacksburg, Virginia 

Prepared for 
Ames Research Center 
under Cooperative Agreement NCC2-71 

fMASA 
National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Branch 

1985 

jynC QTJAUT^ iisSPECTED 2 



ACCELERATED VISCOELASTIC CHARACTERIZATION 

OF T300/5208 GRAPHITE-EPOXY LAMINATES 

(ABSTRACT) 

The viscoelastic response of polymer-based composite 

laminates, which may take years to develop in service, must 

be anticipated and accomodated at the design stage. 

Accelerated testing is therefore required to allow long-term 

compliance predictions for composite laminates of arbitrary 

layup, based solely upon short-term tests. 

In this study, an accelerated viscoelastic 

characterization scheme is applied to T300/5208 graphite- 

epoxy laminates. The viscoelastic response of 

unidirectional specimens is modeled using the theory 

developed by Schapery. The transient component of the 

viscoelastic creep compliance is assumed to follow a power 

law approximation. A recursive relationship is developed, 

based upon the Schapery single-integral equation, which 

allows approximation of a continuous time-varying uniaxial 

load using discrete steps in stress. 

The viscoelastic response of T300/5208 graphite-epoxy at 

149C to transverse normal and shear stresses is determined 



using 90-deg and 10-deg off-axis tensile specimens, 

respectively. In each case the seven viscoelastic material 

parameters required in the analysis are determined 

experimentally, using a short-term creep/creep recovery 

testing cycle. A sensitivity analysis is used to select the 

appropriate short-term test cycle. It is shown that an 

accurate measure of the power law exponent is crucial for 

accurate long-term predictions, and that the calculated 

value of the power law exponent is very sensitive to slight 

experimental error in recovery data. Based upon this 

analysis, a 480/120 minute creep/creep recovery test cycle 

is selected, and the power law exponent is calculated using 

creep data. A short-term test cycle selection procedure is 

proposed, which should provide useful guidelines when other 

viscoelastic materials are being evaluated. 

Results from the short-term tests on unidirectional 

specimens are combined using classical lamination theory to 

provide long-term predictions for symmetric composite 

laminates. Experimental measurement of the long-term creep 

compliance at 149C of two distinct T300/5208 laminates is 

obtained. A reasonable comparison between theory and 

experiment is observed at time up to 10 minutes. 

Discrepancies which do exist are believed to be due to an 

insufficient modeling of biaxial stress interactions, to the 

accumulation of damage in the form of matrix cracks or 

n 



voids, and/or to interiaminar shear deformations which may 

occur due to viscoelastic effects or damage accumulation. 
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I. INTRODUCTION 

In recent years, the use of advanced continuous fiber 

composite materials has expanded into a wide variety of 

market places. Products that have been fabricated at least 

in part from composite materials include military and 

commercial aircraft, space vehicles, rocket motor cases, 

turbine blades, automobile components, pressure vessels, and 

a variety of sporting goods. All indications are that 

advanced composites will become an increasingly important 

material system, competing favorably with the more 

conventional structural materials such as steel or aluminum. 

Perhaps the most attractive aspect of advanced composite 

materials is their very high strength-to-weight and 

stiffness-to-weight ratios. A modern design engineer must 

be concerned with total system weight in order to remain 

energy-efficient, and therefore composites are often ideal 

material systems due to the potential weight savings alone. 

However, composites offer other potential advantages over 

conventional structural materials as well. As examples, 

composites exhibit an improved resistance to fatigue 

failure, an improved resistance to corrosion, and composite 

laminates can be tailored to meet the strength, stiffness. 



and  thermal  expansion  characteristics  required  for  a 

specific design application. 

The mechanical behaviour of polymer-based composites 

differs from the behaviour of conventional structural 

materials in a variety of ways, and a great deal of research 

involving polymer-based composites is currently being 

conducted. For the purposes of the present discussion, 

these programs can be^ loosely grouped as those involving: 

Orthotropic Effects. Composite lamina are highly 

orthotropic in both stiffness and strength. As a 

result, composite laminates may be guasi-isotropic, 

orthotropic, ' or anisotropic, depending on layup. 

Conversely, most conventional structural materials can 

be considered isotropic in both stiffness and strength. 

Environmental Effects. The mechanical behaviour of 

composites can be dramatically affected by exposure to 

a variety of environmental conditions. Conventional 

structural materials can also be affected by 

environmental conditions, but they are less sensitive 

to many environmental conditions which are detrimental 

to composites, e.g., moderately elevated temperatures 

or ultraviolet radiation. 

Viscoelastic Effects. Epoxy-matrix composites exhibit 

significant viscoelastic  or  time-dependent  effects. 



again depending upon laminate layup and also upon 

applied loading. This viscoelastic behaviour is often 

closely related to the environmental effects mentioned 

above. Conventional structural materials exhibit 

significant viscoelastic behaviour only at very high 

temperatures. 

An important distinction to be made between these 

research programs is that those which involve orthotropic 

effects usually consist of a study of some time-independent 

phenomenon, whereas those involving environmental effects or 

viscoelastic effects consist of a study of a time-dependent 

phenomenon. 

The orthotropic behaviour of composites has received the 

most attention in the literature, and methods to describe 

such behaviour have been proposed. As examples, the 

orthotropic stiffness properties of a composite laminate of 

arbitrary layup can be predicted through the use of 

classical lamination theory (CLT). Strength predictions of 

an arbitrary laminate can be obtained through the use of CLT 

coupled with an orthotropic failure law such as the Tsai- 

Hill failure criterion. Research in these areas is 

continuing. Some additional topics of current interest are 

interlaminar and free edge effects [1-5], buckling of 

composite structures [5-8], and the dynamic response of 

composite beams and plates [9,10]. 



The effect of environment on composite materials is also 

a very active area of current research. Some environmental 

factors of concern are temperature, moisture, occasional 

exposure to jet fuel or lubricants, and ultraviolet 

radiation. Of particular interest at present are the 

effects of moisture [11,12] and thermal spikes [13,14] on 

the stiffness and strength of composite materials. These 

studies are ultimately concerned with the long-term 

integrity of composite structures subjected to typical in- 

service environments. 

The viscoelastic nature of composites is closely related 

to the environmental considerations described above, since 

many environmental conditions such as temperature or 

humidity serve to accelerate the viscoelastic process. This 

viscoelastic phenomenon can result in both a gradual 

decrease in effective overall structural stiffness (perhaps 

resulting in unacceptably large structural deformations) and 

also in delayed failures, which might well occur weeks, 

months, or years after initial introduction of a composite 

structure into service. Thus, possible viscoelastic effects 

must be considered over the entire life of a composite 

structure. 

The present study is the continuation of a combined 

research effort by the Materials Science and Applications 

Office of the NASA-Ames Research Center and the Engineering 



Science and Mechanics Department at Virginia Polytechnic 

Institute and State University. The research program has 

focused on the last two areas of composite research 

described above; environmental effects and viscoelastic 

effects in laminated epoxy-matrix composite materials. The 

work at NASA-Ames has been directed towards the effects of 

moisture on the fatigue life of composites [15-17], while 

the VPI&SU studies have been directed towards the 

viscoelastic effects [18-22]. 

The present study will build on much of the previous 

work conducted at VPI&SU involving the viscoelastic 

characterization of composite materials. Therefore, a brief 

review of the VPI&SU studies in this area will be presented 

in the next section. This is followed by a section 

describing the goals of the present study and the 

integration of these goals with previous efforts at VPI&SU. 

Previous Research at VPI&SU 

The viscoelastic nature of composite materials provides 

a unique challenge to the design engineer interested in 

using these materials in load-bearing structural 

applications. Namely, the long-term viscoelastic response 

of the composite structure (which may take years to develop 

in service)  must be anticipated and accomodated at the 



design stage. Obviously, it is impractical and 

prohibitively expensive to perform prototype testing over 

the total service times which might be involved, or even for 

all of the laminate layups which might be considered. Some 

form of accelerated testing/characterization is therefore 

required which would allow long-term stiffness and strength 

predictions for a composite laminate of arbitrary layup, 

subjected to an arbitrary stress and temperature loading 

history. 

An accelerated characterization scheme was proposed by 

Brinson, Morris, and Yeow in 1978 [23]. As originally 

envisioned, the characterization procedure would utilize a 

minimal amount of short-term testing, coupled with the time- 

temperature superposition principle (TTSP) and CLT, to 

predict long-term laminate behaviour. The procedure as 

originally proposed is summarized in Figure 1.1. The first 

step in this proposed characterization process was to 

determine the elastic constants of the unidirectional 

composite lamina (E^,E_,G..„, and v,^) and the lamina failure 

strengths ('^i f / '^^f' ^^^ ^12f ^ ^^^ " '^^^ standard 

transformation equations [24] were then used to obtain the 

lamina modulii corresponding to any arbitrary fiber angle 

(B), while a time independent failure theory was used to 

obtain the failure strengths at these arbitrary fiber angles 

(C) . Creep tests were then performed to obtain the master 



PREDICTED LAHINA 
MODULUS VS.  FIBER 

ANGLE 
(FROM TRANSFORMATION 

EQUATION) 
(B) 

MODULUS MASTER CURVE 
FOR ARBITRARY 

TDIPERATURE AND 
FIBER Ai^IGLE 

(F) 

TESTS TO DETERMINE 
lAMINA PROPERTIES 

El. E2. ^12. G12 
<^l')f>   <'2)f. ■^12)f 

(A) 

TESTS TO DETERMINE 
Ego"" OR E2 MASTER 
CURVE AND SHIFT 
FUNCTION VS. 

TEMPERAHraE 
(D) 

ESTABLISHED SHIFT 
FUNCTION RELATIONSHIP 
WITH FIBER .\MGLE AND 

TEMPERATURE FOR 
COMPOSITE 

(IN WLF SENSE) 
(E) 

PREDICTED LAMINA 
STRENGTH VS. 

FIBER .■\NGLE 
(FROM FAILURE  THEORY) 

(C) 

STRENGTH >USTER 
a'RVE FOR 

ARBITRARY  TEMPERATURE 
Aim  FIBER .\NGLE 

(G) 

INCREMENTAL 
LAMINATION THEORY 
BASED ON MASTER 
CURVES  USED  TO 

PREDICT  LONG-TERM 
LAiMINATE 
RESPONSE 

(H) 

LONG-TERM  LAMINATE 
TESTS  TO  VERIFY 

LONG-TERM  PREDTCTIONS 

(I) 

Figure 1.1: Flow Chart of the Proposed Procedure for 
Laminate Accelerated Characterization and 
Failure Prediction [23] 



curves and shift functions vs. temperature associated with 

the TTSP (D). These results were used to establish the 

functional relationship between fiber angle and shift 

function (E). Once the shift function and modulii for any 

arbitrary fiber angle were determined, a modulus master 

curve for arbitrary temperature and fiber angle was 

generated, again using TTSP (F). A strength master curve 

was obtained for arbitrary temperature and fiber angle by 

using the same shift functions obtained from the modulus 

tests, with the implicit assumption that lamina strength 

varied in a manner similar to the modulii (G). Finally, the 

modulus and strength master curves at arbitrary temperature 

and fiber angles were merged in incremental fashion using 

CLT (H), which allows prediction of long-term laminate 

response. The accuracy of the above analysis was checked by 

actual long-term tests of a few selected composite laminates 

A great deal of research involving the accelerated 

characterization of composites has been performed since 

1978. Extensive creep and creep rupture studies have been 

conducted using the graphite-epoxy composite material system 

T300/934. These tests were conducted at a variety of stress 

levels ranging from a few hundred psi to ultimate strength 

levels, and at a variety of temperatures ranging from room 

temperature  to  temperatures  near  the  glass  transition 



temperature (T ) of the epoxy matrix. Creep tests for 

O-deg, 90-deg and 10-deg off-axis T300/934 specimens have 

been performed, as well as tests involving a variety of 

symmetric laminate layups. Perhaps the most important 

conclusions reached during these studies on T300/934 are: 

* The fiber-dominated modulus E, is essentially time- 

independent [25]. Step (D) therefore requires creep 

tests to obtain master curves for E- and G,- only. 

* The principal compliance matrix used in the modulus 

transformation equations remains symmetric even after 

viscoelastic deformation with time [25]. Step (B) is 

therefore valid. 

* The shift function associated with the WLF equation 

(step E) is independent of fiber angle [25].  This same 

conclusion has also been reported elsewhere [26]. 

The assumption that lamina strength varies in a manner 

similar to the modulii (step G) remains a reasonable but 

unproven assumption for T300/934 graphite-epoxy. A major 

difficulty encountered in assessing this concept has been 

1. The WLF equation will be defined in Chapter II. 
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the collection of consistent creep rupture data. 

Considerable data have been collected, but excessive scatter 

prevents any conclusive interpretations. However, evidence 

supporting this assumption has been reported in reference 

[27], where experimental data are presented indicating that 

the fracture shift factors obtained for both a neat resin 

matrix and a graphite-epoxy composite were nearly identical 

to the compliance shift factors obtained using the same two 

materials. 

The overall conclusion reached during the VPI&SU studies 

is that the accelerated characterization plan depicted in 

Figure 1.1 can be used to provide reasonably accurate 

predictions of long-term laminate response, at least for the 

T300/934 material system studied. 

During the course of these studies, it became desirable 

to modify the proposed characterization plan by replacing 

the TTSP with some other viscoelastic modeling technique, 

for two reasons. First, Ferry reports [28] that the TTSP 

was proposed by Leaderman in 1943 as an empirical curve- 

fitting procedure. Since that time a theoretical basis for 

the TTSP has been developed, but only for linear 

viscoelastic behaviour, and only for temperatures at or 

above the T  of the material.   Composites are used for 
g 

structural applications at temperatures well below their T 

to preserve structural rigidity.  Additionally,  nonlinear 
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viscoelastic behaviour has been observed for composites, 

particularily in shear [18,22,29]. Therefore, even though 

the TTSP appears to provide reasonably accurate predictions 

for composites, the use of the TTSP under the present 

conditions is not rigorously justified. Secondly, the 

conventional TTSP is a graphical procedure, requiring 

horizontal and vertical shifts of the experimental data to 

provide smooth uniform master curves. Producing these 

master curves is a tedious, time-consuming process which is 

subject to graphical error. Also, the amount and type of 

vertical shifting required depends upon the specific 

material system being studied, and no general rule exists 

for all materials which might be considered [19]. Hence, the 

TTSP is unwieldy when compared to other available 

viscoelastic models which are readily adapted to computer 

automation. 

Two viscoelastic models were considered as replacements 

for the TTSP. These models were the theory proposed by 

Findley [30-32] and the theory proposed by Schapery [33-35]. 

The Findley theory is essentially empirical, whereas the 

Schapery theory can be derived using the concepts of 

irreversible thermodynamics. It has recently been pointed 

out that the Schapery theory can be considered to be an 

analytic form of the Time-Stress Superposition Principle 

(TSSP)  [22].  Both the Findley and Schapery theories are 



12 

relatively simple to apply and have been successfully used 

to model a variety of materials. The model selected was 

eventually determined by the available data base. That is, 

the Findley theory requires only creep data to obtain the 

various material parameters involved, whereas the Schapery 

theory requires both creep and creep recovery data. Since 

the existing data base contained only creep data, the 

Findley theory was chosen to replace the TTSP, with the 

recommendation that the Schapery theory be included in 

future research endeavors. 

An automated accelerated characterization scheme was 

developed [21], and a computer program called VISLAP was 

written which incorporates the accelerated characterization 

scheme described above. The program provides long-term 

predictions of the creep compliance and creep rupture times 

for composite laminates of arbitrary layup. VISLAP was 

modified for use during the present study, and details of 

the program structure will be given in Chapter III. 

Typical predictions of long-term creep compliance which 

were obtained during previous efforts [21] are presented in 

Figure 1.2 for a [307-50]^^ T300/934 laminate at 160C 

{320F). Note that while the predictions are for several 

decades of time, actual experimental data exist for only 

about 30 minutes. The Findley parameters used to produce 

these curves are shown in Figure 1.3.  As can be seen, the 
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instantaneous response, e , and the power law coefficient, 

m, vary in a smooth and uniform manner. The power law 

exponent, n, was expected to remain constant with stress but 

experimental values show a significant scatter. An average 

value for n was eventually used in the study. An analysis 

of the power law showed that this instability was due to a 

singularity in n [21]. The experimental data fell near this 

singularity, and hence the evaluation of the power law 

exponent was very sensitive to small errors in the 

experimental data. 

Predictions for creep rupture times are shown in Figure 

1.4, again for a [30/-60] T300/934 laminate at 150C [21]. 

In general, the creep rupture data were characterized by 

significant scatter, which was mainly attributed to 

differences in the material properties of the composite 

panels used in the study. A major contributor may have been 

that the same postcure thermal treatment was not used for 

all specimens, which would have caused considerable 

differences in the viscoelastic response from specimen to 

specimen. In most cases, the predicted rupture times were 

conservative, although in some cases overly so. 

Although the Schapery theory was not used in the 

computer program VISLAP, it has since been successfully used 

at VPI&SU to characterize the viscoelastic behaviour of 

polycarbonate  [35],  bulk  samples  of  FM-73  structural 
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adhesive [37], and unidirectional laminates of T300/934 

[22]. Since the Schapery theory is derived directly from 

the principles of irreversible thermodynamics, it is 

somewhat more appealing than the purely empirical Findley 

equations. In addition, it accounts for some aspects of 

nonlinear viscoelastic behaviour which the Findley equations 

cannot model. Therefore, one of the objectives of the 

present study was to integrate the Schapery theory with the 

accelerated characterization scheme, and in particular to 

insert the Schapery equations into the computer program 

VI SLAP. 

It is evident from the above discussion that the process 

of accelerated characterization as applied at VPI&SU has 

been refined considerably since initiation of the program. 

The original accelerated characterization scheme previously 

illustrated in Figure 1.1 was based almost exclusively on 

the TTSP; subsequently several other viscoelastic and 

delayed failure models have been utilized. As a result, the 

procedure depicted in Figure 1.1 no longer accurately 

reflects the accelerated characterization procedure used at 

VPI&SU. The more general approach which has evolved has 

been discussed in Reference 38. An updated diagram 

illustrating the accelerated characterization procedure is 

given in Figure 1.5. As indicated, the fundamental concept 

remains; to use short-term data obtained from unidirectional 
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composite specimens to predict the long-term behaviour of 

composite laminates of arbitrary layup. 

Objectives of Present Study 

The present research project is essentially a 

continuation of the accelerated characterization study 

described above. It was felt that previous studies had 

validated the concept of accelerated characterization, but a 

further refinement of the technique in terms of a more 

accurate compliance model and improved testing procedures 

was required. In addition, previous efforts focused 

exclusively on T300/934 graphite-epoxy. A different 

material system was selected for use in the present study; 

T300/5208 graphite-epoxy. This system was used because its 

viscoelastic behaviour had not been studied previously at 

VPI&SU. The intent was to validate the accelerated 

characterization method by ascertaining if it would be 

applicable to a new material system. Successful application 

would serve to indicate whether the method could be 

confidently applied to arbitrary reinforced plastics in 

general as well as T300/934 in particular. 

Based upon these general guidelines, the following six 

program objectives were identified: 
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(1) The integration of the Schapery nonlinear viscoelastic 

theory with the accelerated characterization procedure. 

This principally involved modification of the computer 

program VISLAP, including additions and improvements to two 

subroutines, called INPUT and VISCO, and the creation of a 

new subroutine containing the Schapery equations, called 

SCRAP. 

(2) To perform a numerical study of the sensitivity of the 

Findley/Schapery viscoelastic parameters to slight 

experimental error in strain measurement. As indicated in 

Figure 1.3, the experimentally determined values for the 

power law exponent n have been subject to significant 

scatter. Similar scatter has also been reported for the 

Schapery parameters determined using similar experimental 

procedures [37]. While a percentage of this scatter was 

undoubtedly due to actual differences in mechanical 

behaviour from specimen-to-specimen, there was some 

indication that it was also in part due to a very high 

sensitivity to experimental error which was accentuated by 

the particular creep and/or creep recovery testing schedule 

being employed. 

(3) To develop a standard methodology in selecting a 

creep and/or creep recovery testing schedule. This 

methodology was to be based upon the results of objective 
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(2), and it was expected that the procedure developed would 

be applicable to any viscoelastic material system, and not 

just graphite-epoxy composites. 

(4) To apply the accelerated characterization procedure 

to the T300/5208 graphite-epoxy material system. The testing 

program used was to be based upon the guidelines developed 

as objective (3). Short-term creep and creep recovery tests 

were to be performed on 90-deg and 10-deg off-axis 

specimens, at an ambient temperature of 149C (300F). This 

data would then be used with the program VISLAP to generate 

long-term compliance predictions. 

(5) To obtain long-term experimental measurement of the 

creep compliance of two distinct T300/5208 laminates at 149C 

(300F).    In  previous  studies  at  VPI&SU,   compliance 

4 measurements were obtained for a maximum time of only 10 

minutes (6.9 days). Therefore, it was felt that compliance 

measurements at longer times were required to provide a more 

rigorous check of predicted long-term behaviour. The two 

distinct laminate layups were to be selected such that the 

stress state applied to each layup and hence the 

viscoelastic response would be significantly different for 

each layup. Since there was no existing equipment available 

for such a test, it was also required to design and 

fabricate a multiple-station creep frame for this purpose. 
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(5) To compare the long-term experimental measurements 

obtained as objective (5) with the long-term predictions 

obtained as objective (4). The accuracy of the predictions 

at very long times was of particular interest, as was 

whether a conservative prediction of compliance at 

relatively short times remained a conservative prediction at 

very long times. 

Background information related to the present study is 

given in Chapter II, including brief reviews of viscoelastic 

theory and classical lamination theory. The efforts to 

achieve each of the above objectives are described in 

Chapters III through VI11', followed by a summary and 

conclusions discussion presented in Chapter IX. 



II. BACKGROUND INFORMATION 

The Theory of Viscoelasticity 

Viscoelasticity is the study of materials whose 

mechanical properties exhibit both a time-dependency and a 

memory effect. For example, if a tensile specimen of a 

viscoelastic material is subjected to a constant uniaxial 

load, the specimen will "creep", and the apparent Young's 

modulus will steadily decrease with time (or equivalently, 

the apparent compliance of the material will steadily 

increase with time). The viscoelastic material will 

initially remain in a deformed state after unloading, but 

will "remember" its original configuration and with time 

will tend to "recover" back towards that configuration. 

It is apparent from this definition that many time- 

dependent phenomena are not necessarily viscoelastic. The 

mechanical properties of an epoxy change with time during 

the curing process, for example, but this time-dependency is 

due to permanent microstructural changes in the molecular 

chains of the epoxy. Once the cure is complete, there is no 

tendency for the epoxy to return to its former state, and 

hence there is no memory effect. Thus, for a phenomenon to 

be considered viscoelastic, both time-dependency and memory 

effects must be exhibited. 

23 
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Three types of experimental tests commonly employed to 

characterize viscoelastic materials might be considered for 

use during the present study.  These are the creep/creep 

recovery test, the stress relaxation test, and the constant 

strain  rate  test.   The  creep/creep  recovery  test  is 

illustrated in Figure 2.1.  A uniaxial step load is applied 

to the specimen, resulting in an axial stress which is held 

constant  for  a  time  t^.   If  the  test  material  is 

viscoelastic, the specimen "creeps" for times in the range 

of 0 < t < t^ .  After time t^ the load is removed and the 

viscoelastic  material  "recovers"  towards  its  initial 

configuration. 

Strain and stress histories for a stress relaxation test 

are illustrated in Figure 2.2. In this test, a uniaxial 

step deformation is applied to the specimen, resulting in an 

axial strain which is held constant for the duration of the 

test. The applied deformation induces an initial axial 

stress 0^ which slowly "relaxes" with time. 

The constant strain rate test is illustrated in Figure 

2.3. The specimen is subjected to an axial strain which is 

increased at some constant rate R, and the axial stress 

induced within the specimen is monitored. If the test 

material is viscoelastic, the induced stress will not 

increase linearly with time, as indicated. 

In the present study, the creep/creep recovery test was 
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used  almost  exclusively  to  characterize  viscoelastic 

material behaviour, primarily because creep/creep recovery 

tests are the easiest to perform. Constant strain rate tests 

were used occasionally to obtain "instantaneous" modulii, 

but were not used to obtain any viscoelastic parameters. 

The stress relaxation test was not used in this study. 

Viscoelastic materials are sometimes loosely grouped as 

viscoelastic  "solids"  or  viscoelastic  "fluids".   The 

distinction between these two material types is illustrated 

in Figure 2.4 for a creep/creep recovery test cycle.  For a 

viscoelastic solid,  the creep strain increases from the 

initial value s  towards an asymptotic value z   ,    and the 
o °° 

creep strain rate tends towards zero as time increases. 

Upon unloading, the recovery strains return asymptotically 

to zero. 

For a viscoelastic fluid, the creep strains do not reach 

an asymptotic limiting value, and the creep strain rate 

tends towards a constant as time increases. Upon unloading, 

the recovery strains return asymptotically to some permanent 

non-zero strain level, z^. 

As is the case for elastic materials, viscoelastic 

materials may be further classified as either linear or 

nonlinear materials. There are a variety of methods which 

may be used to distinguish between linear and nonlinear 

viscoelastic behaviour.  A typical technique is illustrated 
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in Figure 2.5, where "isochronous" (i.e., constant time) 

stress-strain curves are shown for both linear and nonlinear 

materials. These curves would be generated using data 

collected during several creep tests. Nonlinear behaviour 

is readily identified using this technique, as shown. 

The mathematical modeling of viscoelastic behaviour is 

complicated considerably by nonlinear behaviour. As a 

result, the theory of linear viscoelasticity is very well 

developed and understood, while nonlinear viscoelasticity 

theory has received attention only relatively recently and 

is not as well developed nor understood. 

In the present effort,  the theory of viscoelasticity 

will be used to characterize the epoxy matrix used in a 

composite laminate.  An important property which impacts the 

viscoelastic behaviour of all polymeric materials is the 

glass transition temperature (T ) .  As the temperature of a 
y 

polymeric material is raised through the T , the elastic 
y 

3 
modulus can decrease by a factor of 10  or greater.  At 

temperatures well below the T , polymers are generally very 
y 

brittle, exhibiting little or no viscoelastic response. At 

temperatures above the T , polymers are extremely ductile 

and   "rubbery",   exhibiting   considerable   viscoelastic 

behaviour.   This  dramatic  change  in material  behaviour 

occurs over a narrow temperature range, on the order of 5C 

(lOF).  For epoxies, the T  is usually about 160C (320F). 
y 
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The amount and type (i.e., linear or nonlinear, solid or 

fluid) of viscoelastic behaviour which is exhibited by 

polymeric materials is dependent upon a variety of factors, 

including stress level, temperature, previous thermal 

history, humidity, and molecular structure. 

Linear Viscoelasticity. 

Mechanical Models. Perhaps the most familiar concept of 

linear viscoelasticity is the use of mechanical analogies to 

model viscoelastic behaviour. The two simplest mechanical 

models are the Kelvin (or Voigt) element and the Maxwell 

element. Both elements are simple combinations of a Hookean 

solid (modeled as a linear spring of stiffness k) and a 

Newtonian viscous fluid (modeled as a linear dashpot of 

viscosity v), as shown in Figure 2.6. Note that for a 

constant creep load the deformation of the Kelvin element is 

limited by the elastic spring, and therefore the Kelvin 

element behaves as a viscoelastic solid. In contrast, for a 

constant creep load, the deformation of the Maxwell element 

is not bounded, due to the continued deformation of the 

ideal dashpot. The Maxwell element therefore behaves as a 

viscoelastic fluid. 

It is easily shown that if at time t = 0 a Kelvin 

element is suddenly subjected to a constant creep stress a , 

the resulting strain response is given by 
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e(t) = — (1 - e   ) 

where 

X  =   ^   =  the "retardation time" 
k 

A typical viscoelastic response for a Kelvin element is 

shown in Figure 2.7. Note that the retardation time T is 

determined by the viscosity and stiffness values selected 

for the dashpot and spring, respectively. 

In an analogous fashion, the stress within a Maxwell 

element which is induced by a suddenly applied constant 

strain z     is given by o 

a(t) = k e e  ^^^ o 

where 

T = i!- = the "relaxation time" 
k 

Again, the relaxation time is defined by the viscosity and 

stiffness values selected. 

The behaviour of many viscoelastic materials cannot be 

modeled by using a single Kelvin or Maxwell element, but can 

be accurately modeled using the "generalized" Kelvin or 

Maxwell models. The generalized Kelvin and Maxwell models, 

shown in Figure 2.8, are composed of many (in some cases an 
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infinite number of) Kelvin or Maxwell elements, acting in 

concert. For a generalized Kelvin model there is not a 

single retardation time, but rather many retardation times 

distributed over several decades in time. Furthermore, a 

distinct contribution to compliance can be associated with 

each retardation time. The distribution of these compliance 

increments over time is called the retardation spectrum and 

is usually written L(x), where L(T) has units of area/force. 

In an analogous fashion, the generalized Maxwell model 

possesses many relaxation times, and a distinct contribution 

to stiffness can be associated with each relaxation time. 

The distribution of these stiffness increments over time is 

called the relaxation spectrum and is usually written H(t), 

where H(i:) has units of force/area. In principle, the 

behaviour of any viscoelastic material can be modeled using 

the generalized Kelvin or Maxwell models with an infinite 

number of elements by simply imposing the appropriate 

retardation or relaxation spectrums. A schematic 

representation of a continuous retardation spectrum is shown 

in Figure 2.9. There are also several molecular theories 

which can be used to approximate the continuous viscoelastic 

spectra with discrete spectrum lines [28,39], in which case 

a finite number of Kelvin or Maxwell units is used. For 

example, the creep response of a generalized Kelvin model 

consisting of n Kelvin elements is given by 
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(t) = o^    I    i- (1 - e-'/"i) 
i=l i 

As mentioned above, the Kelvin element is associated 

with the behaviour of a viscoelastic solid and the Maxwell 

model is associated with the behaviour of a viscoelastic 

fluid. However, the generalized Kelvin model can be used to 

model a material exhibiting short-term solid behaviour with 

long-term fluid behaviour by simply removing an elastic 

spring, creating a free dashpot in one Kelvin unit. 

Similarly, the generalized Maxwell model can be used to 

model short-term fluid behaviour and long-term solid 

behaviour by removing a linear dashpot in one Maxwell unit. 

Boltzman Superposition Principle. The response of a linear 

viscoelastic material to some arbitrary stress history can 

be obtained by approximating the stress history using a 

series of distinct steps in stress, as shown in Figure 2.10. 

The strain history is given approximately by 

E(t) = D(t)0Q + D(t-t^)(a^-aQ) + D(t-t^)(o^-o^) 

+ + D(t-t.)(a.-a._^)       (2.1) 

where: 

D{t) = the appropriate material compliance function 

The approximation is, of course, improved as the increments 

in time (t. -   t.   ^)   are made smaller and smaller.  In the 
^ 1    1-1' 
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limit eq. 2.1 becomes exact and may be written as 

ft 

e(t) _ D(t - x) ^ dT (2.2) 
0 ^^ 

Equation 2.2 is the well-known Boltzman Superposition 

Principle, which gives the strain response for a linear 

viscoelastic material to an arbitrary stress input. Note 

that it has been assumed that the material has experienced 

no previous stress or strain histories, i.e., a = s = 0 for 

-oo  <  t  <  0. 

Time-Temperature Superposition Principle. As discussed in 

Chapter I, the time-temperature superposition principle 

(TTSP) was proposed by Leaderman in 1943 [28]. The TTSP is 

also referred to as the "method of reduced variables" by 

some researchers. This principle is of fundamental 

importance to the present investigation because it is an 

accelerated characterization procedure which has been 

extensively studied and successfully used for a wide variety 

of viscoelastic materials. The validity of the TTSP is 

therefore firmly established, lending credibility to the 

present efforts to characterize composite materials using an 

accelerated characterization scheme. 

The steps in data reduction involved in the use of the 

TTSP are summarized in Figure 2.11 for the case of stress 

relaxation  [40].   Short-term stress relaxation data are 
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obtained at a series of increasing temperatures, as shown at 

the left of Figure 2.11.  The short-term test duration is as 

long as is convenient, perhaps ranging from a few minutes to 
4 

10  minutes (5.9 days).  A reference temperature is then 

selected, and a "master curve" is generated by shifting each 

of the short-term test results horizontally left or right 

until a smooth curve is produced.  In general, short-term 

data obtained at temperatures  lower than the reference 

temperature are shifted to the left, while data obtained at 

temperatures  higher  than  the  reference  temperature  are 

shifted  to  the  right.   The  master  curve  is  therefore 

associated  with  the  particular  reference  temperature 

selected, and a different master curve would be obtained if 

a different reference temperature is used. 

The horizontal distance each curve is shifted is equal 

to the log of the so-called "temperature shift factor", a„, 

and has also been plotted as a function of temperature in 

Figure 2.11.  At temperatures above the glass transition 

temperature (T ),  a^ can often be accurately calculated 

using the Williams-Landel-Ferry (WLF) equation [28] 

- C^ (T - T^) 

^°S ^T = C, + T - T ^2-^^ 2       o 

C^ and C^ are constants for the particular material being 

investigated and T is a reference temperature greater than 

or equal to the T  of the material.  It has been empirically 
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observed that for many polymeric materials the WLF equation 

can be written 

- 17.44 (T - T ) 

l°g ^T = 51.6 +T - T ^ ^^-^^ 
g 

where in equation 2.4: 

T > T 
g 

T, T   in degrees Kelvin g 

C^ = 17.44 

A material which can be characterized as described above 

is referred to as a "thermorheologically simple material" 

(TSM). For many materials a master curve cannot be formed 

by means of simple horizontal shifting alone, however, and 

some vertical shifting of the short-term data prior to 

horizontal shifting is required. In these cases, the 

material is referred to as a "thermorheologically complex 

material" (TCM). Vertical shifting is often associated with 

environmental effects such as temperature or humidity and 

also with a nonlinear dependence on stress. Vertical and 

horizontal shifting procedures have been extensively 

reviewed by Griffith, et al [19], and will not be discussed 

in greater detail here. It should be noted however that 

vertical shifting introduces a significant complication in 

the use of the TTSP, and is a major reason why alternate 
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accelerated characterization schemes have been pursued at 

VPI&SU. 

The Findley Power Law Equation. It has been empirically 

observed that the creep compliance function for many 

linearly viscoelastic polymeric materials can be accurately 

modeled using a power law of the form 

- D{t) = A + Bt" (2.5) 

where 

A, B, n = material constants 

t = time after creep loading 

For a creep test, the stress history may be expressed as 

a  = a     H(t), and therefore o ^    '' 

f = 0^ 6(t) (2.6) 

where 

0 = constant o 

H(t) = the Heaviside unit step 
fO, t < 0 

function = ] 
[l, t > 0 

6(t) = —- =  the Kronecker-Delta 
'  t = 0 dt 

function = 
[0, t / 0 

Substituting equations 2.5 and 2.5 into equation 2.2 results 

in the so-called "Findley power law equation": 
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£(t) = e  + mt^ (2.7) 
o 

where 

£  = A a o     o 

m = B a o 

Note  from  these  definitions  that  e^  and m  are  also o 

considered material constants. 

Equation 2.7 has been used by Findley and his co-workers 

to successfully characterize the viscoelastic behaviour of a 

variety of amorphous, crystalline, and crosslinked polymers. 

As presented here, it is valid only for linearly 

viscoelastic behaviour. However, Findley has presented a 

slightly modified form of eq. 2.7 for use with nonlinear 

viscoelastic materials. This nonlinear Findley power law 

will be described in the next section. 

Nonlinear Viscoelasticity 

Mechanical Models. It is theoretically possible to modify 

the linear generalized Kelvin or Maxwell models to account 

for nonlinear viscoelastic behaviour through the use of 

nonlinear springs and/or dashpots. Since the retardation 

(relaxation) times i:. for the Kelvin (Maxwell) model are 

equal to the ratio ]i./'k., this implies that T^ is not a 

constant for each Kelvin (Maxwell) element but rather a 
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function of stress level. Alternatively, nonlinear behaviour 

can be introduced through the use of nonlinearizing 

functions of stress as follows 

(t) = o^    I    ^  (1 - e-^/H) f .(a^) 
1=1 i 

where 

f.{a^)   =  nonlinearizing functions of stress 

Hiel et al report [22] that Bach has used this approach to 

model the nonlinear viscoelastic behaviour of wood. 

Generalized mechanical models are rather cumbersome even in 

the linear case however, and have not been used to model 

nonlinear behaviour to any great extent. 

Multiple-Integral Approaches. The viscoelastic constitutive 

equation relating the strain and stress tensors can be 

written in the most general form as 

T=0 

where 

e..(t), 0,,(x) = strain and stress tensors, 
ij ^ '   kl^ ' 

respectively 

F. ., , = continuous nonlinear compliance tensor 

t = present time 

T = arbitrary time 
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Equation 2.8 implies that the current strain state is 

dependent upon the entire previous stress history, i.e., 

from 0 < T < t. Thus, a material which can be described by 

eq. 2.8 exhibits a memory effect and is viscoelastic. 

In a series of publications [41-43], Green, Rivlin, and 

Spencer presented an analysis which shows that eq. 2.8 can 

be approximated to any degree of accuracy by a series of 

multiple-integrals. This approach involves the use of 

convoluted integrals containing n-th order terms of stress. 

The final multiple-integral expression for three-dimensional 

stress states is quite lengthy and will not be presented 

here. A simpler expression derived by Onaran and Findley 

[44] will be used to illustrate the fundamental concept. 

Their expression is applicable for a uniaxial stress, and 

only two orders of stress are retained. Using this approach 

the following relation is obtained 

t{t)   = 
t 
$^(t-T:) a{x)   dx     + 

0 

^   (^ 2 
§ (t-T,t-T)[0(T)]  dtdT  + 

0 ^ 

2 i^{t-x^,t-i^)a{x^)a{x^)   dT^dT2    (2.9) 

The functions f, and i^ which appear in eq. 2.9 are called 

kernel functions and must be determined experimentally. If 

a third order of stress were used in the derivation of eq. 

2.9, a triple integral would appear involving a third kernel 
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function $^. Therefore, the number of tests required to 

characterize a viscoelastic material using this technique 

depends upon both the type of loading and the desired degree 

of accuracy. If a general three-dimensional stress state 

were assumed and only the first, second, and third orders of 

stress terms are retained, there are still thirteen 

independent kernel functions which must be evaluated. This 

requires over 100 tests involving various combinations of 

uniaxial, biaxial, and triaxial loading conditions. Such 

extensive and diffi^cult testing is impractical in most 

instances. The multiple-integral approach has therefore not 

been used to any extent in practice, even though it is 

probably one of the most accurate and versatile nonlinear 

viscoelastic theories available. 

The Nonlinear Findley Power Law Equation. The linear 

Findley power law was described in the previous paragraph 

and is given by eq. 2.7. As discussed, the parameters e , m, 

and n are considered material constants for the linear case. 

In the nonlinear case, these parameters are not constant 

with stress, but rather are assumed to follow an expression 

of the form 

E  = E ' sinh {ala  ) 

m = m' sinh {a/a  ) (2.10) 
m 

n = constant 
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where 

e ', a , m' , 0 = material constants 
o  z m 

By substituting egs. 2.10 into eq. 2.7 the nonlinear Findley 

power law equation is obtained 

e(t) = e' sinh (a/a  ) + m't^ sinh (o/oj (2.11) 

In eq. 2.11 the nonlinear dependence upon stress is assumed 

to follow a hyperbolic sine variation in stress. Apparently 

this assumption was originally based upon empirical 

observation, although theoretical justification has since 

been suggested [21,34,39]. This approach has been used 

successfully by Findley and his coworkers to characterize 

the viscoelastic response of many materials, including 

canvas, paper, and asbestos laminates [30,31], 

polyvinylchloride [32,44,45], and polyethylene, 

monochlorotriflouroethylene, and polystyrene [45]. 

Equation 2.11 was developed for the case of constant 

uniaxial creep loadings. Findley has also extended this 

concept to account for nonlinear viscoelastic response to a 

varying uniaxial load. This technique is called the Modified 

Superposition Principle (MSP), and has been applied by 

Findley et al to many of the materials mentioned above 

[30,32,45]. More recently, MSP has been applied by Dillard 

et al to characterize T300/934 graphite/epoxy laminates 

[21],  and by Yen to characterize SMC-R50 sheet molding 
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compound [46]. 

The Modified Superposition Principle will be illustrated 

by considering the nonlinear viscoelastic response to a two- 

step uniaxial loading. Consider the creep response at time 

t2 of a material which has been subjected to a constant 

stress 0^ from time t = 0 to t = t^, and subsequently to a 

second stress o- from time t, to t^. According to the MSP 

the creep response at time t- is equal to the sum of the 

creep response due to o^ from t = 0 to t = t^ and the creep 

response due to (a^ - o^) from t = t^ to t = t^. Hence, by 

using eq. 2.11, the creep response at time t^ as predicted 

by the MSP is given by 

e(t„) = e' sinh (a^/a  ) + m' t„ sinh (a^/a  ) ^ o X £       z       1 m 

(2.12) 

+ £' s inh o 
°2 - °1 

a 
£ 

+ m' (t^ -  t )'^ sinh 
^2 - ^1 

a m 

The Schapery Nonlinear Single-Integral Theory. As mentioned 

in Chapter I, Schapery's nonlinear single-integral 

viscoelastic theory can be derived from fundamental 

principles using the concepts of irreversible thermodynamics 

[33,34]. A thorough review of the thermodynamic basis of the 

Schapery theory was recently presented by Kiel et al [22]. 

In the present study, the Schapery theory was integrated 

with  the  accelerated  characterization  scheme  developed 
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during previous research -efforts at VPI&SU [21]. A detailed 

description of the Schapery equations and the application of 

these equations during the present study will be presented 

in Chapter III, so further discussion of the Schapery theory 

will be delayed until that point. 

Classical Lamination Theory 

A composite "lamina" or "ply" is a single membrane of 

composite material in which strong and stiff, continuous 

(i.e., very long) fibers have been embedded within a 

relatively weak and flexible "matrix" material. All fibers 

are aligned in the same direction, and the matrix serves to 

bind the individual fibers together to form a single unit. 

For polymer-matrix composites, laminae thicknesses are 

usually on the order of 0.13 mm (0.005 inch). A composite 

"laminate" is the bonded assemblage of several layers of 

composite laminae. The number of laminae or plies within a 

laminate can vary from a very few (say 4 or 5) to very many 

(say 150), depending upon application. 

Since all fibers within a lamina are orientated in the 

same direction, a lamina is highly orthotropic and exhibits 

very high strength and stiffness properties parallel to the 

fibers and very low strength and stiffness properties 

perpendicular to the fiber direction. A composite laminate 
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is therefore normally designed so that fiber orientation 

relative to some reference direction varies from ply-to-ply, 

providing good overall strength and stiffness 

characteristics in more than one direction. An eight-ply 

composite laminate is shown schematically in Figure 2.12. 

This laminate is described as a [0/90]^ laminate, meaning 

that the O-deg/90-deg lamina pairs are repeated twice and 

symmetrically about the middle surface of the laminate. 

Note that the individual ply directions are referenced to 

the X-axis. 

Since a composite laminate may consist of any number of 

plies, and each ply may be orientated in a different 

direction, some method of predicting the overall elastic 

mechanical properties of the laminate based upon the 

properties of a single ply is required. Such a method has 

been developed and is known as "classical lamination theory" 

(CLT). The principal assumptions made in CLT are the plane- 

stress assumption and the Kirchoff hypothesis, i.e., a line 

which is initially straight and normal to the laminate 

middle surface is assumed to remain straight and normal to 

the middle surface after deformation. In addition, no out- 

of-plane extensional strains are considered. A brief review 

of the conventional equations used in CLT will be given 

below. Notation will follow that of Jones [24]. 

A composite lamina is shown schematically in Figure 
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Figure 2.13: Coordinate Systems Used to Describe a Composite 
Lamina 
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2.13. The coordinate systems used to describe the lamina are 

the principal material coordinate system, axes 1 and 2, and 

the reference coordinate system, axes x and y. The 1,2 

coordinate system is rotated an angle 9 away from the x,y 

system. Under plane-stress conditions the stress-strain 

relations in the 1,2 coordinate system are given by the 

orthotropic form of Hooke's law 

r   = 

■12 

11 Ql2 0 

12 Q22 0 

0 0 0. 66 -> 

^1 
» 

• 
'2 

i^l2  J 

(2.13) 

where 

Q.. = the "reduced stiffness matrix" 

<11  1 - v^2 ^21 <22  1 - v^2 ^>21 

^12 =^21=1 
^12^2 

- ^12^21 

^21^1 

1 - ^12 ^21 

^66 = ^2 

In the x,y coordinate system, the stress-strain relations 

are given by 

X 

*- xy -^ 

'11 ^12  Q16 

^12  ^22  ^^26 

Q16  ^26  ^66 

e 
X 

■ e 
y 

t vj 
(2.14) 

where 
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«ij 
= the "transformed reduced stiffness matrix" 

'11 

<22 

'12 

^16 

'26 

^66 

Q^^ m^ + 2(Q^2 + 2Qg6'*™^'^^ ^^22 "^ 

Q^^ n^ + 2(Q^2 + 2Q^g)m^n^ + Q22 m^ 

^21 = (Qll + Q22 - ^^66^"^'"' + ^^12^^^ + ^"^^ 

^61 = (^11 - Q12 - 2Q66)"^'^ -^ (^12 - Q22 + 2Q66)tnn^ 

^62 = (Qll - Q12 - 2Q66)--' ^  (Q12 - Q22 ■"  2Q66)-'- 

(Qll + ^22 - 2Qi2 - 2Qe6)-'-^ + Q66("^'' + ^^^ 

m = cos n = sin 

A completely equivalent treatment is to consider the strain- 

stress relations. In the 1,2 coordinate system, the strain- 

stress relations are given by 

^1 

^2 ■     = 

'   ^12  J 

11   12 

^12  ^22 

0 

0 

'66 J 12 

(2.15) 

where 

S.. = the "reduced compliance matrix" 

'11  E 22  E, 

-V 

^12  ^21 
12 '21 

66  G 12 

In the x,y coordinate system, the strain-stress relations 
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a 
X r^ii ^12 he' 

a 
y 

• = ^12 hi he ■ 

Y L^16 he he- T 
^ xy ' 

(2.16) 

where 

S  = the "transformed reduced compliance matrix" 
ij 

11 

'22 

'12 

= S,, m^ + (2S,^ + S^^)m n^ + S22 n 
11 

= S^^ n^ + (2S^2 + S66>"^^^' + ^22 "^^ 

L L 2 2 
= S^, = S,^(m + n ) + (S^T + S22 - Sgg)m n 21 12 11 

= SM = (2S,. - 2S.2 - S,g)m n - (2S22 " 2S^2 " ^e^^'^ '16  "61 

^26 = ^62 = ^2^- - 2S,o - S^J"'^^ - (2S„ - 2S^, - S,^)m\ 11 12 '66^ 

22 

22 

'66 

0  0 /       / 

= 2(2S,, + 2S„ - 4S,, - S^^)m n + S^g(m + n ) '12 '66' '11 ■ -"22 

m = cos 6 n = sin 9 

The above relations are derived from the principles of 

orthotropic elasticity, subject to the plane-stress 

assumption. In practice, S^^ and 3^2 are commonly determined 

using strain data obtained during uniaxial tensile tests of 

0-deg and 90-deg specimens, respectively. Probably the most 

common strain-measuring device is an axially mounted 

resistance foil strain gage, although other measurement 

techniques such as extensometers or moire interferometry 

could also be used. Theoretically, S^^ ^^^ ^® determined by 

mounting a transverse strain gage to either a 0-deg or 
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90-deg specimen. However, the value of v^-, is normally in a 

range of about 0.01 to 0.05, and consequently the strains 

measured using a transverse gage mounted to a 90-deg 

specimen are very low. This can lead to relatively high 

experimental error. In practice, it is preferable to 

determine S^^ using a transverse gage mounted on a 0-deg 

specimen. 

A variety of techniques have been proposed to determine 

Sgg, including the rail-shear tests, picture-frame specimen 

tests, and off-axis tensile specimen tests. In particular, 

the 10-deg off-axis tensile test has been proposed by Chamis 

and Sinclair [47] as a standard test specimen for 

intralaminar shear characterization. Several proposed shear 

characterization techniques were reviewed by Yeow and 

Brinson [48], and it was concluded that of those methods 

reviewed the 10-deg off-axis test was best suited for use, 

primarily because it is inexpensive and easily performed, 

while still providing an accurate measure of the shear 

compliance. This technique was used during the present 

study. Additional details of the 10-deg off-axis test will 

be presented in Chapter VI. 

The mechanical response of a composite lamina to in- 

plane external loadings can be described as presented above. 

The mechanical response of a composite laminate to external 

loading  can be  described through  the  use  of  CLT,  in 
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conjunction with the orthotropic elasticity relations 

embodied in eqs. 2.13-15. Some results of CLT pertinent to 

the present study will now be presented; readers desiring a 

more detailed treatment are referred to the text by Jones 

[24]. 

The   resultant  forces  N.    and   resultant moments  M^   acting 

along   the  edges   of  a   composite   laminate  can  be  expressed   in 

terms   of   the   middle   surface   strains   z°   and   curvatures   K^ 

as   follows 

N. 
1 

M. 
I     1 

A. . I B. . 

B.. I D.. 
I     3 

(2.17) 

where 

N.  = 
1 

M.   = 
1 

rt/2 

-t/2 

ft/2 

-t/2 

a.  dz 
1 

a.   z  dz 
X 

-• k=l 

1    f     ,-     ^      /   3 3     , 

k=l 

e° = normal and shear  strains  induced at  laminate middle  surface 
j 

K    =  surface  curvatures  induced  at middle  surface 
j 
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The z-direction is defined in a direction normal to the 

middle surface.  Hence, the quantity (z, - z.._,)   equals the 

thickness of the kth ply within the laminate. The resultant 

forces N. are defined as the force per unit length acting 

along the edge of the laminate. Similarly, the resultant 

moments M. are defined as the moment per unit length acting 

along the edge of the laminate. The strain state of any ply 

within the laminate can be expressed in terms of the middle 

surface strains s. and curvatures K.   [24]. 
3 2 

Through inspection of eq. 2.17, it can be seen that a 

coupling exists between the in-plane forces N. and the out- 

of-plane curvatures K., due to the B. . matrix. Similarly, a 

coupling exists between the out-of-plane bending moments M. 

and the in-plane middle surface strains E ., again due to 

the B.. matrix. Such coupling is a major difference between 

the behaviour of composite materials and more conventional 

isotropic materials, since such coupling between in-plane 

and out-of-plane forces and deformations does not occur for 

isotropic materials. It can be shown that if a composite 

laminate is "symmetric", such as the laminate shown in 

Figure 2.12, then all elements of the B. . matrix are zero, 

and no coupling between in-plane and out-of-plane forces and 

deformations occurs. During the present study, only 

symmetric laminates were considered. In addition, the only 
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external loads considered during the present study were in- 

plane normal loads; i.e., M. = 0. Therefore, eg. 2.17 can 

be simplified for the present case to 

[N. ] = [A. .] [e^l 

or 

{t°]   =   [A. .]"-^{N. (2.18) 

Since neither out-of-plane bending loads nor coupling 

between the in-plane loads and out-of-plane curvatures are 

considered in the present case, the middle surface strains 

o e £. are equal to the elastic laminate strains z. 
J J 

{EJI   =  (Sjl 

The elastic laminate strains E . as calculated above are 

referenced to the x,y coordinate system.  These strains can 

be  transformed  to  the  1,2  coordinate  system  of  any 

individual ply using the standard transformation equation 

I Y12/2 J 

2 
m 

2 
n 2mn £ 

X 

2 
n 

2 
m -2mn £ 

y 

mn mn 
2     2 

m -n .  Y.„/2  . xy 

where 

m = cos 
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n = sin 9 

The elastic stresses acting within the kth ply, 

referenced to the 1,2 coordinate system, can be calculated 

using eq. 2.13 

The elastic strains are considered to be the difference 

between the total laminate strains t .    and any residual 

strains e. present 

In the present case, the residual strains considered will be 

those due to viscoelastic creep. Residual strains can also 

be caused by thermal expansion or water absorption 

(hygroscopic strains). 

Finally, it should be noted that the above relations are 

contingent upon the underlying assumptions of CLT, namely 

the plane-stress assumption and the Kirchoff hypothesis. 

Accordingly, this analysis is not valid for very thick 

laminates or for regions near a free-edge. In both of these 

latter cases, a three-dimensional stress state is induced, 

including interlaminar shear stresses [1-3]. 



III. THE SCHAPERY NONLINEAR VISCOELASTIC THEORY 

One of the objectives of this study was to integrate the 

Schapery nonlinear viscoelastic model with the accelerated 

characterization scheme previously developed at VPI&SU. 

This principally involved the inclusion of the Schapery 

equations in an existing computer program called VISLAP, 

written by Dillard [21]. The efforts to attain this 

objective will be described in this chapter. In the 

following section, the Schapery model will be reviewed, and 

the methods used to incorporate the appropriate equations 

into the present analysis will be described. This 

discussion is followed by a section describing the program 

VISLAP, as modified for use during the present study. 

It should be noted that VISLAP is capable of predicting 

both the long-term creep response and creep rupture times of 

symmetric composite laminates. In the present study, creep 

rupture was not considered, and so in the following 

discussion creep rupture will be mentioned only to provide 

an overall review of the VISLAP program. 

The Schapery Viscoelastic Model 

As mentioned in Chapter I, the Schapery nonlinear 

viscoelastic theory can be derived from fundamental 

principles using the concepts of irreversible thermodynamics 

64 
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[33,34], and a comprehensive review of the thermodynamic 

basis of the Schapery theory has recently been presented by 

Hiel et al [22]. The theory has been successfully applied 

to a variety of materials, including glass fiber-epoxy 

composites [35], T300/934 graphite-epoxy composites [22], 

nitrocellulose film, fiber-reinforced phenolic resin, and 

polyisobutylene [49], and FM-73 structural adhesives 

[37,50,51]. 

For the case of uniaxial loading at constant 

temperature, the Schapery theory reduces to the following 

single-integral expression 

£(t) = go ^o" ^ h 

ft dg a 
AA(^-il>') -^  dT (3.1) 

0" 

where 

A , AA(^) = initial and transient components of the 

linear viscoelastic creep compliance, 
respectively 

^  = <f'(t) 
0- ^a 

^' = ^'(t) = 
0- % 

go/ g-i/ ^o/ a = stress-dependent nonlinearizing 

material parameters 
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Several points should be noted regarding eq. 3.1. First, 

the initial and transient components of the creep 

compliance, A and AA{ip) , are assumed to be independent of 

stress level. That is, at a given temperature both A and 

AA{i|)) are assumed constant for any stress level, and all 

nonlinear behaviour is introduced through the four stress- 

dependent nonlinearizing parameters g-, g^, g^, and a . 

Secondly, no assumption is implied regarding the form of A 

and AA{xl)), and theoretically any form suitable for use with 

the material being investigated may be used. It is often 

assumed that AA(V') can be approximated by a power law in 

time (as will be discussed below), but this is not an 

implicit assumption within the Schapery theory. Thirdly, if 

the material is linearly viscoelastic, then g- = g^ = g^ = 

a = 1 and eq. 3.1 reduces to the familiar Boltzman 

Superposition Principle (eq. 2.2). Finally, the effect of 

the stress-dependent parameter a , embedded within the 

expressions defining the "reduced time" parameters ip and 

ip' , is to "shift" the viscoelastic time scale, depending 

upon stress level. The a parameter can therefore be 

considered to be a "stress shift factor", analogous to the 

familiar "temperature shift factor", a^, used in the TTSP 

and discussed in Chapter II. In this light the Schapery 

theory can be considered to be an analytical form of a Time- 

Stress Superposition Principle (TSSP). 
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If closed-form expressions for gQ, g-^,    ^2'    ^^^ ^o ^^ 

functions of stress are available, and if the form of A^ and 

AA(^)  are known,  then it  is  theoretically possible  to 

integrate  eg.  3.1  and  obtain  an  expression  for  the 

viscoelastic response e(t) for any uniaxial stress history 

a(t).   In  general  such closed-form expressions  are not 

available however, and subsequently simple stress histories 

must be assumed in order to integrate eq. 3.1.  However, 

during the present study a procedure was developed whereby 

the viscoelastic response to  a complex uniaxial stress 

history  can be  approximated  to  any desired degree  of 

accuracy by using a series of discrete steps in stress. 

This approach will be described below and is similar in 

concept to the Modified Superposition Principle proposed by 

Findley and his colleagues, which was discussed in Chapter 

II. 

The first step in the application of the Schapery theory 

is to establish an analytic form of the transient component 

of the creep compliance, hAiip), which is suitable for use 

with the material being investigated. In previous 

applications of the Schapery theory, AA(<|') has been modeled 

using a power law approximation of the form 

^A{ii>)   = Cxl>^ (3-2) 

This form was also used in the present study.  In eq. 3.2 
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both C and n are assumed to be material constants at any 

stress level, for a constant temperature. Substituting eq. 

3.2 into eq. 3.1 results in 

e(t)  = go A^ a + §1 c 
ft 

O' 

n '^^2  ° (3.3) 

Now consider the stress history applied during a creep/creep 

recovery test cycle, as previously illustrated in Figure 

2.1. This stress history can be expressed mathematically as 

a(t) = a^[E{x)   -  H(T - t^)] 

and therefore 

dg2 o 

dx 
= g^ OQ [6(X) - 6(x - t^)] 

For times 0 < t < t.. , the stress is a constant, a   = a   ,    and 

therefore 

ft dt 

li;' = 

,.- a   a 0       a a 

0- % 

Substituting these relations into eq. 3.3 results in 
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s (t) = 
c ^0^ + 

hh C t (3.4) 

Equation 3.4 is the Schapery equation for creep, and is 

applicable for times 0 < t < t^. The values of g^, g^, g2/ 

and a  are dependent upon the applied creep load o .  The 
0 

instantaneous response at time t = 0 will be of interest in 

the following discussion. From eq. 3.4 the response at time 

t = 0 is calculated as 

As(0) = gQA^OQ 

Now consider the recovery strains during times t > t^. 

The current applied stress is now o = 0, and hence ^Q ~ '^1 ~ 

1, and eq. 3.3 becomes 

e^Ct) = C (3.5) 

Since the stress history o(t) is discontinuous, eq. 3.5 must 

be broken into two parts 

£^Ct) = C 
rt-^ dg a 

0" 
ii>-^'y 

dg20 

dT dx (3.6) 
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rt. 
for 

dg^c^ 

dx     ^  VO  ^^'^ 

i> = r '^'- pi a. , 
0- % j 0- %     J 

dt 
1 a 1 

a 

^' 
r^=°dt 

0       % 

for 

dg20 

dx - g^aQ  6(x-t^) 

ip = ^^    dt       h^ 
— = — + t  -  t, 

n-  a. a 1 
0      a a 

^' 
r=ti ^ _ t^ 

0-   % ~ % 

Substituting  the   above   relations   into  eg.   3.6  results   in 

^,(t)   = B^Co^ 
t, + a  t - a  t, 
la a  1 a  t - a t, 

a a  1 
(3.7) 

The following quantities are next defined 

h = v 

t -1, 
A = 

Ae^ = g^g2 C ^^ o^ 
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and equation 3.7 is rewritten in a simpler form as 

£^(t) =^ [(1 + a^X)^ - (a^X)"] (3.8) 

In the  literature,  Schapery has presented the recovery 

equation in the form of eq. 3.8. 

An interesting consequence of the Schapery theory 

involves the instantaneous change in strain following 

removal of the creep load at time t.^. If the recovery 

strain predicted immediately after t^ (calculated using eq. 

3.8) is subtracted from the creep strain predicted 

immediately before t^ (calculated using eq. 3.4), the 

following expression is obtained 

a 

The instantaneous response to the creep load has already 

been shown to be 

As(0) = g^A^OQ 

Thus, the instantaneous change in strain following removal 

of the creep  load at time t^ equals the  instantaneous 



72 

response at time t = 0 only if the material is linear, i.e., 

if g^ = 1.0. If g^ > 1.0, then A£(t^) > AE(0), and the 

resulting nonlinear recovery curve is "flatter" than the 

corresponding linear recovery curve. If g, < 1.0, then 

A£(t.,) < A£(0) and the nonlinear recovery curve is "steeper" 

than the linear recovery response. 

The viscoelastic response to the two-step loading 

illustrated in Figure 3.1 can be derived using similar 

mathematical procedures [49]. For example, for times t > 

t^, the viscoelastic response is given by 

e(t) = 4 ^ ^2 ..^ 
1   ,n , , 2     1  , 

^2*^1 *   (§2^2 ~ ^2 '^1^ ^  - ^ 

a    -" 

(3.9) 

where 

t - t 
i' 1 

+ 1 

a     a 

In eq. 3.9, the superscripts associated with each of the 

nonlinearizing parameters denote the stress level at which 

2 
these parameters are to be evaluated.  For example, g_ 

indicates that g^ is to be evaluated at stress a„. 

During the present study, the Schapery theory was to be 

used to predict the viscoelastic response of individual 

plies within a composite laminate.  In previous efforts, the 
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stress applied to a given ply over time had been 

approximated in discrete steps in stress, as illustrated in 

Figure 3.2. Therefore, an expression for the viscoelastic 

response after an arbitrary number of steps in stress was 

required for the present effort. To the author's knowledge, 

such an expression has not been published in the literature. 

Expressions for three-step and four-step loadings were 

derived, using the same mathematical procedures as described 

above, and a predictable pattern began to emerge. By 

inspection, the following recursive relation was obtained 

for the viscoelastic response at time t., following j steps 

in stress 

^j = 4Vj + gjc 4a^[*]" + (v2-4v i> - 
1 a 

+ (8203 

+ 

2  , 
g2°2) ^- 

^2 - 4 , ^1 
2 1 

a a 
a o 

+  islo.   - g\  V_^)[* - ^1]'' 

(3.10) 

where 

^ = 
k=l    a 

*i = I    r  
k=l   a" 
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As before, the superscripts associated with the 

nonlinearizing parameters g^, g^, g2/ and a^ indicate the 

stress level at which these quantities are to be evaluated. 

In the preceding -discussion a uniaxial normal stress, o, 

has been used to illustrate the Schapery theory. An 

equivalent treatment can be presented for a constant applied 

shear stress , x, and any of the above expressions can be 

converted to the corresponding relationship for shear by 

simply replacing o with T and s with V2• For example, the 

recursive relationship given as eq. 3.10 becomes for the 

case of shear 

1 ^3 = 4Vi + 4 ^ wi^'^'^^ ^ ^V2 - vi^ ^ - 

^% 

^  /   3 2     , 

+ 

*  - 
^2  -  h   ,   ^1 

2 1 
a a 

+  igir.  - gf^j_i)[* - 'J^l]' (3.11) 

where 

^ = 
j 
I 

k=l 

\ - \-l 
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j-1 t, - t, ^ 
,T    r   k   k-1 

k=l    a^ 
a 

Experimental Measurement of the Schapery Parameters 

The above presentation has indicated that to 

characterize the behaviour of a viscoelastic material using 

the Schapery theory, seven material parameters are required. 

These are the elastic compliance term A , the power law 

parameter C, the power law exponent n, and the four 

nonlinearizing functions of stress, g-^(a), g^(a), g (a), and 

a (0). These parameters are customarily determined through 

a series of creep/creep recovery tests at sequentially 

higher creep stress levels. At relatively low stress 

levels, linear viscoelastic behaviour is usually observed, 

and hence g,, = g^ = g^ = a = 1. Therefore, at low stress 

levels the Schapery single-integral (eq. 3.1) reduces to the 

Boltzman Superposition Principle (eq. 2.2), and the Schapery 

equation for creep (eq. 3.4) is equivalent to the Findley 

power law equation (eq. 2.7). The results of the low stress 

level creep tests can therefore be used to determine A , C, 

and n. 

Nonlinear viscoelastic behaviour is often initiated at 

relatively high stress levels, and in general g^  i^  g    4  q^  ^ 
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a  9^ 1.  These four parameters are determined using the 
0 

results of high stress level creep tests,  where it is 

assumed that A ,   C, and n have been previously determined. 

Lou and Schapery [35] have presented a technique whereby 

these seven material parameters are determined graphically. 

Since graphical techniques are inherently time-consuming and 

subject to graphical error, computer-based routines have 

been developed which determine these parameters by 

performing a least-error-squared fit between the 

experimental data and the appropriate analytic expression. 

Two such numerical schemes where used in the present study. 

The first of these was written by Bertolloti et al [52], and 

is called the SCHAPERY program, since it is based upon the 

Schapery nonlinear equations. The second was written by Yen 

[46], and is called the FINDLEY program, since it is based 

upon the Findley power law equation. As discussed above, 

under conditions of linear viscoelastic behaviour the 

Schapery creep equation and the linear Findley power law 

equation are equivalent. FINDLEY was used in the present 

study only for linear viscoelastic stress levels. 

Both the SCHAPERY and FINDLEY programs utilize a 

commercially available least-error-squared fitting routine 

called ZXSSQ, which is an ISML library routine available on 

the VPI&SU computer system. This routine is capable of 

fitting  a user-supplied analytic expression involving N 
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unknowns to a set of M experimental measurements. The 

details of the ZXSSQ routine are proprietary to ISML, and in 

any case are irrelevent to the present discussion since 

routines which can provide the same function are available 

on most computer systems. 

Some details regarding the SCHAPERY and FINDLEY programs 

are described below. 

Program SCHAPERY 

The computer program SCHAPERY is used to perform two 

distinct analyses, the linear viscoelastic analysis and the 

nonlinear viscoelastic analysis.  For the linear case three 

unknowns are  required;  namely A ,  C,  and n.   For the 

nonlinear case it is assumed that A , C, and n are known, o 

and the four remaining unknowns g_, g.. ,  g_,  and a  are 

required.  It is easiest to discuss the program by first 

considering a linear analysis and then considering a 

nonlinear analysis. 

Linear Analysis. For the linear case the Schapery equations 

for creep and recovery are reduced to: 

£ (t) = A a + Cat^ (3.12) 
CO 

and 

e^(t) = Ae^[(l + X)^ - X""] (3.13) 
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where 

AE- = Cat^ 

The three unknowns in these equations are the instantaneous 

compliance A , and the power law parameters C and n. 

The SCHAPERY program uses linear creep and recovery data 

to determine these parameters as shown in the flow chart 

given in Figure 3.3. First information defining the data 

set is input. This includes the number of recovery points, 

NREC, the number of creep points, NCR, the creep unloading 

time, t-, the creep stress level, o, and initial estimates 

for the transient creep strain. As,, and power law parameter 

n. Note that in the linear case the transient creep strain 

is directly proportional to the power law parameter C 

A£. 
C = 1L_ (3.14) 

^0 h 

Therefore,  the  initial estimate  for As,  is an  initial 

estimate for C as well. 

Next the recovery data pairs are input, consisting of the 

recovery time, TREC(iyi), and the measured recovery strain, 

REC(M). The linear recovery curve, eq. 3.13, is then fit to 

the data using ZXSSQ, and estimates for the two unknowns Ae^ 
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Input 
No. Recovery Data Pts., NREC 
No. Creep Data Pts., NCR 
Unloading Time, TCRIT = t^ 
Creep Stress, SIGMA 
Initial Estimates for 

'1 

Ae 

Input Recovery Data Pairs 

Call Subroutinp 7Y^^r\ 

Fit Linear Recovery Equation: 

Return: 

A£^ = Cat 

Input Creep Data Pairs 

Can SubrQijt.Ino 7Y<^S(] 

Fit Linear Creep Equation: 

^c^t)  = e^  + Cat' 

Return: 

% - ^- 

[ stop j 

Figure 3.3: Flow Chart for Program SCHAPERY - Linear Analysis 
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and n are obtained.  C is then calculated using eq. 3.14. 

The creep data pairs are then input, TCR(iyi) and CR(M) . 

Since C and n have been determined using the recovery data, 

the  only  unknown  which  remains  is  the  instantaneous 

compliance A .  The value of A  is calculated by fitting the 
o o 

creep data to the linear equation for creep, eq. 3.12, again 

using the library routine ZXSSQ. 

Nonlinear Analysis.   In the nonlinear case,  the Schapery 

equations for creep and recovery are 

£ (t) = g^A a^ +-^ C t% (3.15) 
c     *0 o 0    n      o a 

a 

and 

£^(t) = 
% 

[(1 + a^A)" - (a^X)"] (3.16) 

where, for the nonlinear case, 

Ae, = -^^^ Cat, In      1 a a 

Since it is assumed that a linear analysis has been 

performed to determine A , C, and n, there are only four 

unknowns remaining in eqs. 3.15 and 3.15. These are gQ, g^, 

g-, and a . Program SCHAPERY uses nonlinear creep and creep 

recovery data to determine these parameters as shown in the 

flow chart given in Figure 3.4. First, information defining 

the data set is input, which includes the number of recovery 
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Input 
No. Recovery Data Pts., NREC 
No. Creep Data Pts., NCR 
Unloading Time, TCRIT = t-. 
Creep Stress, SIGMA 
Initial Estimates for 
(A£-j/g^) , a^ 

Input Recovery Data Pairs 

Call Subroutine ZXSSQ 

Fit Nonlinear Recovery Equation: 

ejt) =^[(1 +a X)" - (ax)"] 
I       y-i        0        0 

Return: 

(Ae^/g^) , a^ 

Input Creep Data Pairs 

Call Subroutine ZXSSQ 

Fit Nonlinear Creep Equation: 

£ (t) = g.A a + -^ Ct"a^ 
c^ '  ^0 0 0  , n   0 

Return: 

Figure 3.4: Flow Chart for Program SCHAPERY - Nonlinear Analysis 
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points, NREC, the number of creep points, NCR, the creep 

stress unloading time, t^, and initial estimates for the 

transient recovery strain, (Ae^/g^), and the parameter a^. 

The recovery data pairs are then input, which consists of 

the recovery time, TREC(M), and the measured recovery strain 

at that time, REC(M).  The nonlinear recovery curve, eq. 

3.16, is then fit to the data using ZXSSQ and estimates for 

the  two curve-fitting parameters,  (Ae^/g^)  and a^,  are 

obtained. 

Next, the creep data pairs are input, TCR{M) and CR(M). 

The nonlinear creep curve, eg. 3.15, is then fit to the 

creep  data using  ZXSSQ.   Estimates  for  the  quantities 

(g^A a)   and (g.,g^Ca/a^) are obtained.  This completes the 
^ ^0 o 12   a 

analysis, since all of the Schapery parameters may now be 

calculated as follows: 

§0 = 

Ae, = 
o-i o o 

C a 
n 

Ae, 

'1  (Ae^/g^) 

^1^2 
n 

a 
>, a 

C a 

g^C a 
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Program FINDLEY 

Since the program FINDLEY is used only for the case of 

linear  viscoelastic behaviour,  there  are  only  three 

unknowns, A , C, and n.  These parameters are determined 

using creep data only. The creep data is fit to the Findley 

power law equation 

E(t) = z     +  mt^ 
^ '    o 

where 

t     = A a 
o   o 

(3.17) 

m = Co 

A flow chart for the FINDLEY program is given in Figure 3.5. 

Information defining the data set is input first, including 

the number of creep data points, initial estimates for e^, 

m, and n, and the time and creep data sets.  The Findley 

power law is then fit to the data, and best-fit estimates 

for E , m, and n are returned.  A  and C are then calculated 
o o 

using eqs. 3.17. 

Average Matrix Octahedral Shear Stress 

A  final  consideration  is  the  effect  of  stress 
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Input 

No. Creep Data Pts., NCR 
Initial Estimates for 
£ , m , and n 
0 

Input Creep Data Pairs 

Call Subroutine ZXSSQ 

Fit Linear Creep Equation: 

£^(t) = OQ + mt' 

Return: 

e 5 m 5 and n 

Figure 3.5: Flow Chart for Program FINDLEY 
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interaction in the case of multiaxial stress states. During 

experimental characterization of a viscoelastic material the 

various parameters are often determined under conditions of 

a uniaxial normal stress. In the present case the S22{t,a) 

compliance term was determined based on a uniaxial stress 

0 , for example. However, an individual ply within a 

composite laminate is in general subjected to a plane-stress 

state consisting of the three stress components a^,   a^,    and 

1 . The effects of stresses a^ and z^^ °^ viscoelastic 

parameters which have been determined under uniaxial stress 

0 only must therefore be considered. Lou and Schapery [35] 

and Dillard, Morris, and Brinson [21] have accounted for 

such interaction through the use of the "average matrix 

octahedral shear stress", T^^^. This approach uses a simple 

rule of mixtures approximation to calculate tQct* '^^^ 

resulting expression for T^^^ is [21] 

1 
2.2 

oct 
= 1 [(a- - a^)' + (ay  + (o^  + 6(^1^]' (3.17) 

where the matrix stresses o^, o^, and x^^ ^^^ given in 

terms of the applied ply stresses o^, a^,   and i^^ ^^ 

^1 

^E m 

^ 
m 

i    0^ 0 

m 0 

m 

0 

1 

^2  ^ 

^12 

(3.18) 
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and 

V = matrix Poisson's ratio 
m 

E^ = fiber modulus 

E  = matrix modulus m 

v^ = fiber volume fraction 

Note that it is assumed that both the ply normal stresses 

perpendicular to the fibers and the ply shear stresses are 

supported entirely by the matrix, i.e., a^   = o^ ^^'^ ''•12 

^12- 

Some of the above properties were not available for the 

graphite-epoxy used in this study, as the manufacturer had 

only supplied the volume fraction.  The properties required 

were obtained by measuring E^^, E22/ ^^^i v^2' ^^*^ assumimg a 

value for v .  With the additional rule of mixtures relation 
m 

E  =  L_JB  
22   (1 - vp E^ 4. v^ E^ 

it was possible to calculate an appropriate value for each 

of the required material properties. The values obtained 

and used in the analysis were 
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E^^  =   132.2   GPa   (19.16  X  10     psi) 

v,2  =  0.273 

V     =  0.35 m 

E^  =  201.3   GPa   (29.2   X   10^  psi) 

E     =3.42   GPa   (0.497  X  10     psi) 

v^  =  0.65 

The ply strain-stress relationships as used in the 

present analysis can now be written in the form of eq. 2.15 

as 

e^it) 

1 £2^'^)  '■ = 

I Ti2^^^ J 

11 

0 

12 

^22(t'^oct> 

0 

0 

66^ ' oct 

a-^(t) 

a2(t) (3.19) 

Lamination Program VISLAP 

The computer program VISLAP provides long-term 

predictions of both the creep compliance and the creep 

rupture times of composite laminates of symmetric layup. 

This program was modified during the present study by 

inserting the Schapery viscoelastic model into the program 

as described above.  The program will be briefly described 
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in this paragraph. The reader is referred to Reference 21 

if additional details regarding program structure are 

desired. 

The analysis performed by VISLAP is based upon classical 

lamination theory, either the Findley MSP or the Schapery 

viscoelastic model, and the Tsai-Hill failure criterion 

[24]. The Tsai-Hill failure criterion is normally applied 

to elastic materials, but has been modified for use with 

viscoelastic materials during previous research efforts 

[21]. A linear cumulative damage law is used to account for 

time-varying ply stresses. 

A flow diagram of VISLAP is given in Figure 3.6. The 

program proceeds as follows: The laminate layup and initial 

lamina properties are input, (A). The current elastic 

laminate strain is determined using CLT, (B) through (G) . 

The total laminate strain is then calculated as the sum of 

the current elastic laminate strain plus the current 

equivalent laminate creep strain, (H) . The individual ply 

stresses are next calculated, based upon the total laminate 

strain manus the individual ply creep strain, (I). If the 

ply stresses have changed significantly since the previous 

time step, a nonlinear iteration procedure cycles through 

steps (B) through (I) to assure that the ply stresses have 

converged to the actual current stress state, (J). This 

stress state is then stored in a stress history array and 
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time is incremented,  (K) .  The current ply creep strains 

which would be produced by the stresses stored in the stress 

history  array  are  then calculated,  (L).   The modified 

version of VISLAP allows the user to select either the 

Findley MSP viscoelastic model or the Schapery viscoelastic 

model to calculate these ply creep strains.  An "equivalent 

mechanical load" which equals the summation of the loads 

required  to produce  ply  elastic  strains  of  the  same 

magnitude  as  the  current  ply  creep  strains  is  next 

calculated  (M) .   This  equivalent load is then used to 

calculate the equivalent laminate creep strain (N) .  The 

modified Tsai-Hill failure criterion is used to predict any 

lamina failures/together with the cumulative damage law and 

the stress history array.   Should a ply fail, the ply 

properties are modified to account for the type of ply 

failure (i.e., either a fiber or a matrix failure), (0) and 

(P).  The entire procedure is repeated until either all 

plies have failed or the user-specified maximum time is 

reached. 

A subtle point in the analysis which should be noted is 

that the equivalent laminate creep strains calculated in 

step (N) do not in general equal the individual ply creep 

strains calculated in step (L). The differences between the 

equivalent laminate creep strains and the individual ply 

creep strains are added to the original elastic ply strains. 
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resulting in ply stresses which vary with time. As 

viscoelastic deformations occur, a greater percentage of the 

externally applied loading is supported by the fibers, 

whereas the matrix load is decreased. Thus, the ply 

stresses change with time even though the externally applied 

creep load is constant. 



IV. SENSITIVITY ANALYSIS 

Early in the experimental portion of this study, it 

became apparent that the linear viscoelastic parameters A^, 

C and n were very sensitive to small errors in measured 

strain data. High sensitivity to measurement errors have 

also been reported by Dillard [21], Hiel [22], Rochefort 

[37], and Yen [46]. Both Dillard and Yen concluded that a 

stable value for the power law exponent n could not be 

obtained through short-term creep tests; long-term tests of 

a duration of 10 minutes (6.9 days) or greater were 

required. The major difficulty encountered by Hiel during 

his application of the Schapery theory was that "damage" 

accumulated within the test specimen during the creep 

portion of the creep/creep recovery testing cycle. This 

resulted in a permanent strain reading after the recovery 

period, i.e., the recovery strains did not return to zero 

but rather approached some permanent strain level in an 

asymptotic manner. Similar difficulties have been discussed 

by others, including Lou and Schapery [35], Caplan and 

Brinson [36], and Peretz and Weitzman [50]. From these 

efforts, it appears that damage accumulated during the creep 

portion of the testing cycle is the major potential source 

of error in application of the Schapery theory. Hiel used 

his  recovery  data  to  calculate  various  viscoelastic 

94 
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parameters, but could obtain stable values only by first 

subtracting the permanent strain from the recovery data 

recorded at each point in time. This procedure effectively 

translates the entire recovery curve down towards zero 

strain. 

It should be noted that many researchers subject 

viscoelastic specimens to a "mechanical conditioning cycle" 

prior to the creep/creep recovery test [35,37,46]. The 

assumption is that such a conditioning cycle produces a 

stable damage state within the specimen, and no further 

damage is accumulated during the creep/creep recovery test. 

Apparently this approach avoids the difficulties associated 

with permanent recovery strains encountered by Hiel. 

However, Hiel argues [22] that mechanical conditioning 

results in a fundamental change in the material being 

investigated, and therefore results obtained from 

mechanically conditioned specimens do not reflect the 

behaviour of the material which would occur in a practical 

situation. Specifically, it was felt that mechanical 

conditioning results in plastic deformation of the matrix 

material which alters the initial stress-strain constitutive 

relationship of the virgin matrix material. A further 

complication arises in the present case, since results 

obtained using unidirectional specimens were to be used to 

predict the response of laminates with arbitrary layup. 
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Since ply stress states vary with layup, the appropriate 

mechanical conditioning cycle would depend upon the specific 

laminate being studied. Due to the above considerations, no 

mechanical conditioning was performed in the present study. 

Two areas of concern arose during the present efforts 

due to the above observations. First, the level of accuracy 

required when determining the values of the seven Schapery 

viscoelastic parameters was not clear. Since these 

parameters were to be used to predict long-term viscoelastic 

behaviour, such errors could obviously impact the predicted 

response. Therefore, until the impact of these errors on 

predicted response was evaluated, the severity of such 

errors could not be properly appreciated. Secondly, it 

appeared that some viscoelastic parameters were more 

sensitive to experimental error than others. For example, 

the values obtained for the power law exponent n by Dillard 

[21] at various stress levels exhibited a significant 

scatter, whereas the values for the power law parameter m 

(where in the linear case m = Co) were relatively smooth and 

uniform with stress (see Figure 1.3). An attempt was made 

to determine the origin of this sensitivity. It was felt 

that such information would indicate the level of stability 

which could be expected for each parameter during reduction 

of actual experimental data, and might also be useful in 

selecting appropriate testing cycles and data reduction 
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techniques. 

Impact on Long-Term Predictions 

One of the major objectives of this study was to predict 

the long-term behaviour of a composite laminate based solely 

upon the results of short-term tests of unidirectional 

composite specimens. Specifically, the creep compliance of 

a composite laminate was monitored for a period of 10 

minutes (59.6 days). Therefore, the impact of error over a 

10  minute period was considered. 

Consider a nonlinear viscoelastic material subjected to 

a uniaxial creep load, and assume that the material follows 

the Schapery theory exactly. Thus, the viscoelastic 

response is given by eq. 3.4, restated here for convenience 

£^(t) = SnK + 
h^l   ^ ^ 

'0 o      n a a 

(3.4, 

Further suppose that the exact values for each of the seven 

viscoelastic parameters involved in eq. 3.4 are as follows 

A  = 0.0978/GPa (0.674 X 10"Vpsi) 

C = 0.00210/GPa-min" (0.0145 X 10~Vpsi-min^) 

n = 0.33 

^0 = 1-^° 

g^ = 1.10 

q^   =   0.90 

a =0.90 
0 
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The values for the nonlinearizing parameters correspond to 

values expected for a slightly nonlinear viscoelastic 

material. They were selected because previous results 

indicated that the 90-deg unidirectional T300/5208 graphite- 

epoxy specimens used in this study were either linearly 

viscoelastic or only slightly nonlinearly viscoelastic at a 

temperature of 300F. The values for A , C, and n were 

estimated using the results of a few initial tests at low 

stress levels. 

Now suppose that an experimental program has been 

conducted, and all viscoelastic parameters have been 

calculated exactly except for one, say g-• The superscript 

"e" denotes that the experimental g^ value is in error. The 

creep strain which would be expected based upon these 

experimental results is given by 

<(t) = gnA„ + '0 o      n a a 
% 

The error in predicted strain at any time t can now be 

expressed as 

error(t) = — T-T  x 100% E (t) c 

The impact on predicted strain levels at any time t due to 
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an error in one of the viscoelastic parameters can be 

isolated using this approach.  Based upon previous results, 

a deviation of ±10% from the average measured value of the 

linear viscoelastic parameters is not uncommon,  so this 

level of error was used in the analysis.  A creep stress 

level of 13.8 MPA (2000 psi) was assumed. 

Note from eq.  3.4 that g^ and A  are both linearly 

related to the creep strain £ (t),  and therefore a jtlO% 

error in either g„ or A  has the same affect on e_,(t). 0     o c 

Similarly,. +10% errors in g,, g2 / or C affect the predicted 

creep strains in identical fashion. Therefore, only four 

analyses were required: the first to account for errors in 

g_ or A , the second to account for errors in g^, g^, or C, 

the third to account for errors in n, and the fourth to 

account for errors in a^. 

Results are summarized in Figures 4.1-4.4. Figure 4.1 

illustrates the error in predicted creep strains due to a 

+ 10% error in either g_ or A . An error of this type is 

confined entirely to the instantaneous creep strain, i.e., 

the transient creep strains are not affected by an error in 

either g,^ or A . Therefore, the percentage error is equal 

to +10% at time t = 0, and slowly decreases with time as 

transient strains develop. After 10 minutes, the error has 

been reduced to about +7%. 

The effects of a +10% error in g^ ,  g,,  or C are 
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illustrated in Figure 4.2.  Since an error of this type 

impacts only the transient component of the total creep 

response, the percentage error is very low at short times, 

and in fact is zero at time t = 0.  As indicated,  the 

percentage error reaches ±3%  after 10  minutes. 

Figure 4.3 illustrates percentage error due to a ±10% 

error in n.  This error again impacts only the transient 

strain response, and hence the error is very low at short 

times.  At long times however, the error becomes appreciable 

and obviously increases dramatically for times greater than 

10  minutes.  A 10% error in n results in a 12% error in 

£ (t) after 10  minutes, while a -10% error in n results in 
c 

a -9% error in z   (t) after 10  minutes. 

A +10% error in a  is illustrated in Figure 4.4.  The 
— 0 

error curve for a is very similar to that for error in n, 

but as indicated the predicted values for E (t) are much 

less sensitive to error in a than to error in n.  The error 
0 

in £ (t) due to a +10% error in a  is less than +1% after 
c 0 

10  minutes. 

It should be noted that Figures 4.1-4.4 are based upon 

the specific values selected for A , C, n, g^, g^, g2 / and 

a .  Different results would obviously be obtained if the 
0 

material properties were different, and the results reported 

here should not be considered to be representative of the 

response of all viscoelastic materials.  It is considered 
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that the results presented are reasonably accurate for a 

90-deg unidirectional specimen of T300/5208 graphite-epoxy, 

however. 

Sensitivity to Experimental Error 

In this paragraph, efforts to determine which of the 

viscoelastic parameters are most sensitive to experimental 

error will be described.  As presented in Chapter III, these 

seven parameters are determined using a two-step process. 

First A , C, and n are calculated using creep and recovery 

data obtained at relatively low stress levels such that 

linear viscoelastic behaviour is observed.  Once estimates 

for A , C, and n are obtained the remaining four parameters 

<3Q'     g-1/ <32'     ^^*^ ^o ^^® determined using nonlinear data 

recorded at higher stress levels.  The sensitivity analysis 

followed this same format.  An analysis was first performed 

which considered the sensitivity of A , C, and n to errors 
■^     o 

in linear viscoelastic data. A second analysis then 

considered the sensitivity of g^, g,, g„, and a to errors 

in nonlinear viscoelastic data. 

The first step in both analyses was to generate an 

"exact" creep and creep recovery data set. This data set 

was generated analytically using the Schapery equations. 

That is, strain data were calculated at specified times 

using eqs. 3.4 and 3.8 and subsequently used as the exact 
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data set. Values assumed for the various viscoelastic 

parameters were the same as those listed in the preceding 

paragraph, and as noted are appropriate for a slightly 

nonlinear viscoelastic material. A 30 minute/50 minute 

creep/creep recovery testing cycle was assumed. A testing 

cycle of this duration is typical of those used in previous 

studies [18-22,35-37,46,50,51]. During the present study, a 

480 minute/120 minute creep/creep recovery test cycle was 

used, partially due to the results of the present 

sensitivity analysis. Selection of the testing cycle 

employed in this study will be further discussed in Chapter 

V. 

Once the exact data was obtained as described above, it 

was neccessary to define the errors within the data set. 

Two types of error were considered, a "percentage error" and 

an "offset error". For the percentage error case, the 

strain data used in the analysis was in error by some 

constant percentage of the exact strain value at each point 

in time. The +10% error case for creep recovery is shown in 

Figure 4.5. Note that a percentage error causes a change in 

shape of the strain history curve, since the numerical value 

of the error changes as the value of the exact strain data 

changes. 

For the case of an offset error, the strain data used in 

the analysis was in error by some constant amount at any 
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time. That is, some constant strain value was added to or 

subtracted from the exact data set at all times. The +5 

yin/in offset error case is shown for creep recovery in 

Figure 4.6. An offset error does not change the shape of 

the strain history curve, but rather rigidly translates the 

entire curve up or down the vertical axis. Note that Kiel 

[22] reduced his recovery data as if an offset error had 

occurred. That is, the permanent strain reading recorded 

after recovery was subtracted from the recovery strain data 

at each point in time, translating the entire curve down the 

strain axis. 

Both the percentage and offset error types have been 

defined as an artificially smooth deviation from exact 

behaviour. Simple random error probably occurs most 

frequently in practice, where "random error" refers to small 

errors in strain measurement which occur in no discernible 

pattern and at intermittent times throughout the test 

period. Due to their very nature, random errors are 

difficult to model. The effects of random error are most 

often accounted for through the use of some least-error- 

squared smoothing technique. Such techniques were used 

during the present study as described in Chapter III, to 

minimize the effects of any random experimental error. 
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Linear Viscoelastic Analysis 

As discussed in Chapter III, two computer-based fitting 

routines were available to obtain the linear viscoelastic 

parameters A , C,  and n.  The SCHAPERY program utilizes 

linear creep recovery data to calculate C and n, and linear 

creep data to calculate A .  The FINDLEY program uses only 
^ o 

linear creep data to calculate A^, C and n.  These programs 

were used to generate the results presented below. 

Calculations Using Creep Data.  A^, C, and n were calculated 

using creep data which contained percentage errors ranging 

from -10% to +10%.  The results of these calculations are 

summarized in Figure 4.7.  It was found that n is completely 

independent  of percentage  errors,  as  n was  calculated 

correctly as 0.33 in all cases.  AQ and C were influenced 

dramatically by percentage errors, however.  Furthermore, it 

was found that a percentage error in strain data causes the 

same percentage error in A  and C.  For example, a +10% 

error in strain measurement causes the same +10% error in 

both A  and C. o 

A , C, and n were next calculated using creep data which 
o 

contained offset errors ranging from -100 yin/in to +100 

uin/in.  These results are summarized in Figure 4.8.  It was 

found that both C and n are independent of offset errors in 

creep data, and all error is confined to the estimate for 

A .  This is as would be expected, since as previously noted 
o 
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an offset error does not change the shape of the creep curve 

but merely shifts the entire curve up or down the vertical 

axis. Hence, only the estimate for the initial compliance 

A is affected. These results imply that even in the case 

of very high offset error accurate measurement of C and n is 

possible using creep data. 

Calculations Using Recovery Data.  The parameters C and n 

were  calculated  using  recovery  data  which  contained 

percentage errors ranging from -10% to +10%.  The results 

are summarized in Figure 4.9.  As before, it was found that 

n is completely independent of percentage errors, while C is 

linearly dependent on percentage errors; a +10% error in 

strain measurement causes a +10% error in the calculated 

value for C. 

In Figure 4.10 the estimates for C and n calculated using 

recovery data which contained offset errors ranging from -5 

yin/in to +5 liin/in are shown.  It is seen that both C and n 

are highly sensitive to offset errors in recovery strain 

data.  This is in direct contrast with the results presented 

in Figure  4.8,  where it was  shown that  offset errors 

imbedded within linear creep strain data had no effect on 

the estimates for C and n, but only on the estimate for A . 
o 

These results indicate that estimates for C and n may be 

more stable if obtained by using creep data rather than 

recovery data, especially under conditions in which offset 
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errors may be prevalent. 

Nonlinear Viscoelastic Analysis 

During the nonlinear viscoelastic analysis, the impact 

of measurement error on the four nonlinearizing parameters 

g   g   g   and a were investigated.  It was assumed that 

the exact values for A , C,  and n were known,  and the 
o 

program SCHAPERY was used to calculate the effects of the 

two types of error considered. 

Effects of Percentage Errors. The effects of percentage 

errors ranging from -10% to +10% are summarized in Figures 

4.11-4.14. As indicated, the parameters g,, and q^ ^^® most 

sensitive to percentage errors. The variance of g^ with 

percent error was found to be linear, and is very similar to 

the effects on A  in the linear case (see Figure 4.7).  This O V        ^ / 

simply reflects that error in the initial response is 

embedded entirely within the g_ parameter. Errors in the 

transient response are divided among the g^, g^, and a^ 

parameters in a manner dictated by the least-squared-error 

convergence criteria within the program SCHAPERY. This 

accounts for the rather irregular dependence on percent 

error exhibited by these three parameters. 

Effects of Offset Error. Offset errors were expected to 

arise mainly due to accumulated damage within the matrix 

material.  Such damage becomes apparent during the recovery 
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Figure 4.11: Sensitivity of g^ to Percentage Errors in Strain Data; 
Stress = 1750 psT, A = 0.674, C = 0.0145, n = 0.33 
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Figure 4.12: Sensitivity of g-, to Percentage Errors in Strain Data; 
Stress = 1750 psi, A = 0.674, C = 0.0145, n = 0.33 
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Figure 4.13: Sensitivity of g, to Percentage Errors in Strain Data; 
Stress - 1750 pst, A - 0.674, C = 0.0145, n = 0.33 
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Figure 4.14: Sensitivity of a to Percentage Errors in Strain Data; 
Stress = 1750 ps^ , A^ = 0.674, C = 0.0145, n - 0.33 
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portion of the creep/creep recovery testing cycle in the 

form of a permanent strain reading. If this permanent 

strain is subsequently removed from the recovery data, the 

offset error within the recovery data is presumably 

decreased to a relatively low level. However, since the 

mechanism by which damage is accumulated during creep is not 

apparent, no correction of the creep data has been performed 

during previous efforts. The offset error within the creep 

data therefore remains relatively high. 

These considerations were taken into account by 

specifying different levels of offset error in the creep and 

creep recovery data. Offset errors ranging from -100 yin/in 

to +100 ]iin/in were assumed to exist within the creep data, 

while offset errors ranging from -5 yin/in to +5 yin/in were 

assumed to exist within the recovery data. While specifying 

offset error in this manner is admittedly arbitrary, it is 

believed to reflect the qualitative nature of offset errors 

which would exist in an experimentally obtained data set. 

The results of this analysis are presented in Figures 

4.15-4.18. The major impact of the offset errors considered 

is embedded within the parameters g^ and a^, although all 

four parameters are affected to a greater extent by offset 

errors than by percent errors. 
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Figure 4.15: Sensitivity of g^ to Offset Errors in Strain Data; 
Stress = 1750 psT, A^ = 0.674, C = 0.0145, n = 0.33 
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Figure 4.16: Sensitivity of g. to Offset Errors in Strain Data; 
Stress = 1750 psi, A^ = 0.674, C = 0.0145, n = 0.33 
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Figure 4.18: Sensitivity of a to Offset Errors in Strain Data; 
Stress = 1750 psi, A^ = 0.674, C = 0.0145, n = 0.33 
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Summary of the Sensitivity Analysis 

The results of the sensitivity analysis just described 

were used to guide the selection of the creep/creep recovery 

testing cycle used in the present program, which will be 

discussed in Chapter V. Therefore, it is appropriate to 

summarize the major results of this analysis at this point. 

It is concluded that an accurate measure of n is crucial 

for reasonable long-term predictions of viscoelastic creep 

response. Errors in g,, q^' '^' °^ % '^^^ also be important 

at very long times, but for the particular time frame used 

in the present study these are less important than errors in 

n. It is considered from a practical standpoint that errors 

in A or g„ are relatively unimportant, first because such 

errors are apparent immediately and second because the 

impact of such errors decreases with time. 

It is further concluded that the power law exponent n 

should be calculated using creep data rather than recovery 

data. As demonstrated, n is insensitive to percentage 

errors within either creep or creep recovery data, and is 

also insensitive to offset errors within creep data. This 

parameter is very sensitive to offset errors within recovery 

data, however, and it is likely that offset errors will 

occur due to the accumulation of damage during the creep 

cycle. 

While the sensitivity analysis presented in this chapter 
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is believed to represent a reasonable approach, it must be 

admitted that rather arbitrary and subjective assumptions 

have been made. These are necessitated for the most part by 

the unknown nature of the damage mechanism believed to be 

primarily responsible for experimental error. Until further 

information regarding such damage is available, a more 

rigorous sensitivity analysis cannot be performed. 



V. SELECTION OF THE TESTING SCHEDULE 

Preliminary Considerations 

The seven viscoelastic parameters involved in the 

Schapery nonlinear viscoelastic theory are typically 

determined using data obtained during a series of 

creep/creep recovery tests. The testing schedule used to 

determine these parameters must b§ selected so as to insure 

that the viscoelastic response predicted at long times is 

reasonably accurate. This is especially significant in 

light of the analysis presented in Chapter IV, where it was 

demonstrated that an error in any of the parameters 

associated with the transient response (g^, g2, a^, C, or n) 

is not apparent at short times but may result in gross error 

at long times. This implies that prior to selection of the 

creep/creep recovery testing cycle a conscious decision must 

be made regarding both the desired length of prediction and 

desired accuracy of prediction. A testing cycle which 

results in an acceptable prediction at 10 minutes may not 

result in an acceptable prediction at 10 minutes, for 

example. 

A review of the literature indicates that in general the 

creep/creep recovery testing schedules used during previous 

applications of the Schapery theory have been of relatively 

124 



125 

short duration. For example, some reported creep/creep 

recovery time schedules are 60 minutes/600 minutes [22], 60 

min/120 min [35], 30 min/30 min [36], 30 min/60 min [37], 15 

min/5 min [50,51], and 25 min/25 min [53]. In all studies 

the viscoelastic response was compared to actual 

measurements and Judged to be an accurate prediction. 

However, in all cases the predicted response was compared 

over a time span either equal to or only slightly greater 

than the original creep time. Thus, it is not clear whether 

the viscoelastic parameters determined using the short-term 

testing schedules listed are accurate enough to provide 

viscoelastic predictions at much longer times, say at times 

4 greater than 10 minutes. 

Another  consideration  is  the  method  of  strain 

measurement used.   In this  study (and in most previous 

studies) resistance foil strain gages were used to measure 

strain.  In modern strain gage applications, the strain gage 

system  (including  strain  gage,  amplifier,  and  readout 

device) will commonly provide a sensitivity of 1 yin/in. 

However, there are many inevitable experimental difficulties 

involved, including amplifier nonlinearities, instabilities, 

and noise;  strain gage thermal compensation;  strain gage 

stability and drift;  and tolerances in gage factor and 

resistance.  When these factors are taken into account, 

measurement  accuracy  under  the  best  of  conditions  is 
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probably no better than about +_5 yin/in. This potential 

level of error must also be considered during selection of 

the test cycle. 

The amount of viscoelastic response expected at the 

temperature and stress levels of interest is also of 

importance. In general, long-term predictions for highly 

viscoelastic materials require a very accurate measure of 

the viscoelastic parameters, whereas predictions for mildly 

viscoelastic materials require less accurate measurement of 

these parameters. 

A final consideration is applicable for the specific 

case in which the transient compliance is modeled using the 

power law (as in the present study). The power law is 

merely a good approximation to the actual transient 

compliance function. While the power law is reasonably 

accurate for many viscoelastic materials, it cannot provide 

an exact match with measured results at all points in time. 

Since in practice the viscoelastic response at long times is 

generally of greatest interest, it is desirable to provide 

the best fit between analytic and experimental results at 

long times. Accuracy at long times is often accomplished at 

the expense of accuracy at short times, however. 

Testing Schedule Selected 

The test schedule used during this study was selected 
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with several objectives in mind, in light of the above 

considerations and the results presented in Chapter IV. The 

schedule was keyed towards an accurate measure of the power 

law exponent n.  The selection process is described below. 

Initial estimates for the linear viscoelastic parameters 

A , C, and n were obtained by conducting a few 30 min/50 min 

creep/creep recovery tests on a 90-deg specimen of T300/5208 

graphite-epoxy. The results of these tests were used in the 

sensitivity study presented in Chapter IV, and the estimates 

obtained are restated here for convenience 

A  = 0.0978/GPa (0.674 X 10"^/psi) 

C = 0.00210/GPa-min^ (0.0145 X lO"Vpsi-min^) 

n = 0.33 

The linear viscoelastic creep response at any time t is 

given by eq. 3.4 (with g^ = g = g = a =1) 

e (t) = [A + C t""] a_ (5.1) 
CO U 

Equation 5.1 can also be rearranged to provide an expression 

L, t, 

r^Jt) 
for n, in terms of A , C, n, t, and £(t) 

^°S i^ ^= A 
(5.2) 

log t 

The approximate creep strain expected at 10 minutes for 

T300/5208 was calculated using eq. 5.1 and the initial 

estimates for A , C, and n, at a stress level 12.1 MPa (1750 
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psi). The viscoelastic response was expected to be linear 

at this stress level. The approximate creep strain was 

calculated as 

£(10^) = 2313 yin/in 

Next, an accuracy of +10% at 10 minutes was specified. 

That is, the measured value of n was required to produce a 

predicted creep response within j^lO% of the actual creep 

strain at 10  minutes. A j^lO% error implies a predicted 

5 
response at 10  minutes of 

E(10^)^^Q  = 2544 vin/in 

E(10   )_^„o/  =  2082   viin/in 

The  error bounds  on n  can now be  calculated using  eq.   5.2 

^+10% = ^-^-i^ 

^-10% = °-2i° 

Since the "exact" value of n is assumed to be 0.33, the 

specified +10% tolerance on predicted creep strain at 10 

minutes requires that the error in n range between -6.1% to 

+ 4.8%. Therefore, the creep time used to determine n must 

be long enough such that this difference in n can be 

distinguished. As previously discussed, the accuracy in 

strain gage measurements is perhaps +5 yin/in.   It was 
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arbitrarily decided to specify a confidence level in strain 

measurement of j^20 yin/in for the present study. That is, 

the creep time was to be long enough such that a variance of 

+20 yin/in away from "exact" behaviour could be measured. 

It was reasoned that this rather conservative confidence 

level would help to assure an accurate measure of n. The 

transient response given by each value of n has been plotted 

in Figure 5.1. As indicated a variance of +^20 pin/in away 

from the response for n = 0.33 occurs at about 480 minutes. 

The duration of the creep test chosen for this study was 

therefore 480 minutes. 

Once the length of the creep test was selected it was 

possible to specify a reasonable recovery period. The 

predicted recovery curves following 480 minutes of creep at 

12.1 MPa are shown in Figure 5.2. Since the material has 

been assumed to be linearly viscoelastic, the variance from 

the n = 0.33 curve is initially +20 yin/in. After 120 

minutes this variance has been reduced to about +13 yin/in. 

This was judged to be a reasonable recovery time, and so 

recovery strains were monitored for 120 minutes. 

In summary, the creep/creep recovery testing cycle used 

in this study was keyed towards accurate measure of the 

power law exponent n, since a sensitivity analysis had 

indicated that errors in long-term predictions would most 

likely arise due to errors in n.  Based upon the procedure 
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described  above,  a  480  minute/120  minute  creep/creep 

recovery test cycle was selected. 

Proposed Test Selection Process 

The procedures followed in selecting the creep/creep 

recovery test schedule were intended to assure accurate 

long-term prediction of viscoelastic response. The test 

selected depends to a certain extent upon the material being 

studied, in the present case T300/5208 graphite-epoxy. It 

is likely that a different test schedule would be selected 

if a different material were being investigated. Therefore, 

the test selection process followed during this study has 

been itemized below. This "standard" procedure would serve 

to address those variables which are essential for accurate 

long-term predictions. 

• Obtain initial estimates for the linear viscoelastic 
parameters A , C, and n through a few relatively short 

creep/creep recovery tests at low stress levels. 

• Determine the desired maximum time of prediction and 
desired accuracy at the maximum time.  In the present 

5 
study these were 10  minutes and jtlO%' respectively. 

• Using the initial estimates for A , C, and n, calculate 

the expected "exact" response at the maximum time of 
prediction (using eq. 5.1) and the acceptable error 
bounds in predicted creep strain at that time. 

• Calculate the acceptable error bounds for the power law 
exponent n (using eq. 5.2). 

• Determine the "confidence" level for the strain 
measuring system being used. In the present study, 
this confidence level was specified as +20 uin/in. 
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Determine the creep time required to distinguish the 
creep response for an n value outside of the acceptable 
range in n. In the present study, this creep time was 
determined to be 480 minutes, using Figure 5.1. 

Select a recovery period based upon the expected 
recovery response after the creep time determined 
above. In the present study, the recovery period 
selected was 120 minutes, based upon Figure 5.2. 

These general guidelines should be especially helpful to 

the researcher studying a viscoelastic material which has 

not been previously investigated. 



VI. ACCELERATED CHARACTERIZATION OF T300/5208 

During this study, the accelerated characterization 

scheme described in previous chapters was applied to the 

T300/5208 graphite-epoxy material system. The viscoelastic 

response of unidirectional 90-deg and 10-deg off-axis 

specimens was monitored during 480 minute/120 minute 

creep/creep recovery tests, conducted at several stress 

levels. These tests were used to characterize the 

viscoelastic behaviour of the matrix-dominated properties 

S22 and Sg,. A few tests were conducted using 0-deg 

specimens to measure the fiber-dominated properties S.,., and 

S^2- Specific details including specimen fabrication, 

equipment used, data collection techniques, typical data 

obtained, data analysis techniques, and results of the 

short-term analysis will be presented in this chapter. 

Specimen Fabrication 

Specimens were fabricated from 8-ply panels of 

T300/5208. These panels were layed up by hand, using NARMCO 

RIGIDITE 5208 Carbon Fiber Prepreg tape with a fiber volume 

fraction of 55%. It is desirable to cure composites in an 

autoclave, since the resulting composite laminates are 

generally of a higher quality than those produced by other 

methods.  However,  the use of an autoclave could not be 

134 
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arranged within the time frame of the present study, and 

therefore the panels were cured using the VPI&SU hot press 

facility. The heat and pressure cycle used to cure the 

panels consisted of the following steps: 

• Initial heatup from room temperatures to 135C (275F), 
at an average rate of 2.8C/min (5F/min), at atmospheric 
pressure 

• Hold temperature at 135C for 30 minutes at atmospheric 
pressure 

• Apply 6.89 kPag (100 psig) with platens 

• Raise temperature to 179C (355F) at 6.89 kPag and hold 
for 120 minutes 

• Cool in press to 60C (140F) at 6.89 kPag 

• Remove from press and air-cool to room temperature 

Nominal panel dimensions were 0.10 cm X 30.5 cm X 30.5 cm 

(0.04 in X 12.0 in X 12.0 in). 

A problem experienced throughout the program was a 

shortage of prepreg tape. The experimental portion of the 

program was initiated using prepreg on hand, which had a 

fiber volume fraction of 65%. After a significant amount of 

testing had been completed, it was learned that additional 

prepreg with the same fiber volume fraction was not 

available. Rather than repeating all of the tests which had 

been conducted up until that time, the program was continued 

using the limited amount of materials on hand. This caused 

some difficulty with respect to selection of the laminates 

used during the long-term creep studies.  These problems 
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will be further discussed in Chapter VII. 

The tensile specimens were sawed from the panels using a 

diamond wheel abrasive disk. Nominal specimen width was 1.3 

cm (0.50 inch). Specimen length ranged from 17.8 cm to 33.0 

cm (7.0 to 13.0 inches). 

It has been shown [20-22,39] that previous thermal 

history can dramatically affect the viscoelastic behaviour 

of polymer-based composite materials. Therefore, after 

being sawed from the panels, all specimens were subjected to 

a post-cure thermal treatment. This treatment was intended 

to erase the influence of any previous thermal histories, 

and to bring all specimens to a common thermodynamic (i.e., 

viscoelastic) reference state. The post-cure consisted of 

the following steps: 

• Initial heatup from room temperatures to 177C (350F) at 
an average rate of 2.6C/min (4.7F/min) 

• Hold temperature at 177C for four hours 

• Cooldown from 177C to approximately 49C (120F) at a 
closely controlled rate of 2.8C/hr (5F/hr) 

• Remove from oven and air-cool to room temperature 

After post-cure, all specimens were placed in a desiccator 

at a relative humidity of 21% + 3% until used in testing. 

Specimens were strain gaged using gages mounted back-to- 

back and wired in series, as described by Griffith, et al 

[20]. Using back-to-back gages in series serves two 

purposes. First, the effective resistance of the strain gage 
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is doubled, which allows the use of a relatively high 

excitation voltage resulting in high sensitivity, while 

still maintaining low gage current and good gage stability. 

Secondly, any effects due to specimen bending are 

electrically averaged and therefore removed from the strain 

gage signal. Micro-Measurement 350J2 WK-series strain 

gages were used. The WK gage alloy is especially stable and 

suited for use at high temperatures [54]. The gages were 

mounted to the specimens using the M-Bpnd 500 adhesive 

system. This is an elevated-temperature adhesive requiring 

a cure temperature ranging from about 75C (175F) for 4 hours 

to about 175C (350F) for 1 hour [55]. In the present study, 

a cure at 82C (180F) for 8 hours was used to assure complete 

cure of the adhesive while still avoiding any perturbation 

of the post-cure thermal treatment. 

For 0-deg and 90-deg tensile specimens, uniaxial strain 

gages were mounted along the major axis of the specimen, 

parallel  to  the  load direction.   For  10-deg  off-axis 

specimens,  a  3-element  strain gage  rosette  was  used, 

oriented as shown in Figure 6.1.  All gages were mounted 

using a magnifying glass to aid in gage alignment. 

Since WK-series gages are provided with preattached 

leadwire ribbons, lead wires were soldered to the ribbons 

rather than directly to the gage tabs. This avoided placing 

the soldering iron tip in direct contact with the specimen. 
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10 fiber 
direction 

gage a gage c 

Figure 6.1: 10-deg Off-Axis Tensile Specimen, Indicating 
Orientation of the 3-Element Strain Gage Rosette 
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which can cause local damage in the form of broken fibers, 

damaged epoxy matrix, or both [56]. Micro-Measurements 

330-FTE leadwire was used, which is a 3-conductor, stranded 

silver-plated copper wire with Teflon insulation, suitable 

for use to 260C (500F). 

Thermal compensation of the strain gage signal was 

accomplished using the dummy gage technique [57]. In this 

method, a gaged "dummy" specimen is placed immediately 

adjacent to the mechanically-loaded "active" specimen. In 

all cases, the dummy specimen was identical to the active 

specimen with respect to gage type and gage/fiber 

orientation. The two specimens were wired in adjacent arms 

of a Wheatstone bridge circuit. Ideally, the dummy specimen 

experiences the same thermal history as the active specimen. 

Due to the characteristics of the Wheatstone bridge circuit, 

any gage response to temperature is cancelled and the 

remaining gage signal is entirely due to the mechanical 

load. 

Equipment Used 

Tensile creep loads were applied using one of three 

different dead-weight creep frames. All frames utilize a 

lever-arm system to apply the tensile creep load. The 

majority of the short-term creep/creep recovery tests were 

conducted using an Applied Test Systems (ATS) creep machine 
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featuring an automatic loading system and load re-leveler. 

The lever arm for this frame is adjustable to either a 3:1 

or 10:1 load ratio. The maximum applied load capacity at 

either ratio is 88,964 N (20,000 Ib^). The frame is 

equipped with an ATS series 2912 oven and series 230 

temperature controller. Oven temperatures are maintained to 

within +1.1C (+2.0F). 

A few short-term tests were conducted using a Budd creep 

frame, also equipped with a ATS series 2912 oven and series 

230 temperature controller. The load ratio for this machine 

is fixed at 10:1. The maximum rated load for this frame is 

26,590 N (6000 Ib^). This frame was used infrequently and 

only when the ATS machine was not available. 

The long-term laminate creep tests were performed using 

a five-station creep frame. This frame was designed and 

built in-house during the present study, specifically for 

the long-term creep tests. The supporting structure of this 

frame is a channel- and I-beam weldment, produced in the 

VPI&SU University Machine Shop. Tool steel, surface treated 

to a hardness of R 58-60, was used for all knive edges and 

mating surfaces to reduce the effects of plastic deformation 

and friction. Each of the five lever arms has a fixed load 

ratio of 10:1, and were designed to apply a maximum load of 

13,345 N (3000 lb.) per arm. (Perhaps it should be noted for 

further reference that no loads greater than 4448 N were 
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applied during the present study.) Five individually 

controlled ovens were constructed using sheet steel and 

aluminum angles, and were insulated with a 2.5 cm (1.0 inch) 

thickness of Carborundum FIBERFAX ceramic insulation. The 

interior cavity of each oven is nominally 15.2 cm X 15.2 cm 

X 53.3 cm (6.0 in X 6.0 in X 21.0 in). Heat is introduced 

using Watlow resistance heating elements and controlled 

using Omega model D921 digital temperature controllers. 

Temperatures were maintained to within jil. IC (j^2.0F) over 

the 10  minute creep period. 

Strains were measured using either a Vishay series 2100 

amplifier and strain gage conditioning unit with MTS model 

408 voltmeter (used with either the ATS or Budd creep 

frames), or with a Vishay P-350A portable digital strain 

indicator with SB-IK ten-channel switch and balance unit 

(used with the five-station creep frame). Strain and time 

data pairs were logged by hand and subsequently entered into 

the IBM mainframe, housed at the VPI&SU Computing Center. 

All further data reduction was accomplished using the IBM 

mainframe and FORTRAN programs. Strain data were taken with 

an amplifier gage factor setting of 2.0, and were 

subsequently corrected for actual gage factor and (where 

appropriate) for transverse sensitivity effects. 
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Selection of Test Temperature 

As previously noted, the Schapery theory can be 

considered to be a Time-Stress Superposition Principle. A 

viscoelastic material can therefore be characterized at a 

single temperature through a series of creep/creep recovery 

tests at several stress levels. This is in contrast to the 

Time-Temperature Superposition Principle, in which a 

material may be characterized at a single reference 

temperature through a series of creep tests at a common 

stress level but at several temperatures. Temperature- 

dependence was not considered in the present study, and all 

tests were conducted at a single test temperature. 

Dramatic viscoelastic  response was desired so as to 

provide a rigorous check of both the Schapery theory and of 

the laminate characterization scheme as a whole.  Therefore, 

a test temperature approaching the T  of the epoxy matrix 
y 

was required. The T was determined through a series of 5 

minute creep tests at temperatures ranging from 66C (150F) 

to 199C (390F). A 90-deg unidirectional specimen was used 

at the relatively low stress level of 11.4 MPa (1650 psi) to 

assure a linearly viscoelastic response. The creep strains 

at 1 and 5 minutes were recorded, and an "average creep 

rate" was defined as 

Ae ^ £(t) - e(l) 
At       4 
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Both the 5 minute creep compliance and the average creep 

rate have been plotted as functions of temperature in Figure 

5.2. As indicated, the 5 minute creep compliance 

measurements indicated gave a T of 178C (353F), while 

average creep rate measurements indicated a T of 180C 

(355F). This mild discrepancy was considered to be within 

experimental error bounds. These results are also in 

agreement with results presented elsewhere [11]. 

A test temperature of 149C (300F) was selected, based 

upon Figure 5.2. It was reasoned that adequate viscoelastic 

response would occur at this temperature, without severely 

reducing specimen strength or rigidity. 

Tests of 0-deg Specimens 

Two tensile tests were conducted using 0-deg specimens 

to determine the fiber-dominated properties E^.. and v, ^ (or 

equivalently, S^ ^ and S.._). These properties were assumed 

equal in tension and compression. As expected from previous 

results [11,18-23], neither E,, nor v,^ exhibited 

appreciable time-dependent behaviour at a temperature of 

149C, and were therefore treated as linear elastic 

properties during the laminate analysis. The results 

obtained and used in the analysis were 

E^^ = 132.2 GPa (19.15 X 10^ psi) 
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v^2 = 0.273 

or. 

S,, = -^ =  7.570 X 10 ^^ GPa "*" (52.19 x 10 ^ psi "'') 
11  E^^ 

S,^ = -^ = -  2.067 X lO"-*-^ GPa ^ (-14.25 x 10 ^ psi ^) 
12   E^^ 

The tensile modulus value can be compared to the results of 

Kibler; E^^ = 136 GPa [11]. 

Tests of 90-deg Specimens 

The 90-deg tests were used to characterize the 

viscoelastic response of the matrix-dominated modulus E-». 

The ultimate strength perpendicular to the fibers at 149C 

was inititally estimated to be 31.1 MPa (4500 psi), based 

upon a parallel study by Zhang [58]. This ultimate strength 

was somewhat lower than expected. Sendeckyj et al [59] 

report an ultimate strength of 49.6 MPa (7150 psi) at room 

temperatures for T300/5208. Therefore, an ultimate strength 

of perhaps 41.4 MPa (5000 psi) had been anticipated at a 

temperature of 149C. However, during the present study even 

the lower strength levels observed by Zhang were not 

attained, as all 90-deg specimens failed at stress levels 

greater than 20.7 MPa (3000 psi).  This failure occurred for 
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a total of four specimens, two of which had been used in 

previous tests and two of which were virgin specimens. All 

failures occurred in the specimen grips rather than in the 

strain gage area. These specimens were rather delicate, and 

it is possible that they were damaged slightly during gaging 

and/or mounting in the grips, although care was taken to be 

gentle. Further tests with new specimens were not possible 

due to the material shortages mentioned above. It should be 

noted that in previous viscoelastic studies at VPI&SU 15-ply 

specimens were used rather than 8-ply specimens. Perhaps in 

future efforts 16-ply specimens should again be used, since 

the increased specimen thickness may help to improve 

durability. 

Strain data for the entire 480 min/120 min 

creep/recovery test cycle were obtained at seven stress 

levels ranging from 10.5 to 20.7 MPa (1528 to 2997 psi) . 

For each test, a minimum of 26 creep and 21 recovery data 

points were taken, at the nominal times listed in Table 6.1. 

Following collection, the data were entered into the IBM 

mainframe computer and reduced using either the SCHAPERY or 

FINDLEY programs described in Chapter III. An interactive 

graphics routine was also written which allowed an immediate 

plot of the data and analytic fit. Sample plots are shown 

in Figures 6.3-6.5. The entire creep/recovery data set is 

shown in Figure 6.3.  The solid line represents the analytic 
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Table 6.1: Nominal Mea surement rimes For The 480/120 Minu1 
Creep/Creep Recovery Tests 

Creep Measurement Time Recovery Measurement Time 
Number Time (minutes) Number Time (minutes) 

1 0.5 1 0.25 
2 1.0 2 0.50 
3 1.5 3 0.75 
4 2.0 4 1.0 
5 3.0 5 1.5 
6 4.0 6 2.0 
7 5.0 7 3.0 
8 7.0 8 4.0 
9 10. 9 5.0 

10 15. 10 7.0 
11 20. 11 10. 
12 25. 12 15. 
13 30. 13 20. 
14 40. 14 25. 
15 50. 15 30. 
16 60. 16 40. 
17 90. 17 50. 
18 120. 18 60. 
19 150. 19 80. 
20 180. 20 100. 
21 210. 21 120. 
22 240. 
23 300. 
24 360. 
25 420. 
26 480. 
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fit provided by the SCHAPERY program. The transient creep 

response is shown in Figure 6.4; i.e., the instantaneous 

response has been subtracted from the creep data and only 

the transient viscoelastic response is shown. Recovery data 

and analytic fit are shown in Figure 6.5. This plotting 

routine was used to detect any input errors and as a visual 

check of the analytic curve fit. 

One difficulty associated with the relatively long 480 

minute creep period used in this study was the resulting 

long time required for specimen recovery. At the lower 

stress levels, the recovery response was complete after a 

1-2 day period, and a new test could be initiated. At the 

higher stress levels, a considerably longer recovery time 

was neccessary; at the highest stress levels a recovery 

period of 10 days was required. Also, at these higher 

stress levels, a permanent non-recoverable strain was 

recorded. The permanent strain following recovery will be 

further discussed below. In these cases, recovery was 

judged "complete" when the strain measurement did not change 

appreciably over a 24 hour period. 

Stress-strain curves obtained at 0.5 and 480 minutes 

during the creep cycle are shown in Figure 6.6. Results 

indicate very slight nonlinear behaviour at stress levels 

greater than about 15.6 MPa (2250 psi). This result was not 

unexpected,  since  slight nonlinear behaviour for 90-deg 
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Figure 6.6: Stress-Strain Curves Obtained at 0.5 and 480 Minutes for 
90-Deg T300/5208 Specimens 
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specimens of T300/934 had been suspected by Hiel [22], 

although the creep/creep recovery cycle he used was not long 

enough to distinguish nonlinear behaviour. The results 

presented in Figure 6.6 confirm this suspicion and also 

raise an interesting question regarding the concept of a 

linear/nonlinear distinction in stress level. That is, 

while the results obtained at 0.5 minutes indicate linear 

behaviour at any stress level, the results obtained at 480 

minutes indicate nonlinear behaviour at stress levels 

greater than 15.6 MPa. It can be hypothesized that if creep 

data had been taken at times greater than 480 minutes 

nonlinear behaviour would have been evident at stresses 

lower than 15.6 MPa. Therefore, it may be that nonlinear 

behaviour occurs at any stress level for T300/5208, but is 

not apparent at short times for low stress levels. 

From a practical viewpoint, if viscoelastic behaviour is 

to be predicted at time t = 0.5 minutes, then nonlinear 

effects can be neglected at any stress level. Conversely, if 

the prediction is to be made for 480 minutes, then nonlinear 

behaviour must be accounted for at stress levels greater 

than 15.6 MPa. Thus, the decision as to whether to include 

nonlinear effects in an analysis depends upon the desired 

length of prediction. This greatly complicates the process 

of accelerated characterization, since it implies that 

nonlinear effects important at long times cannot be sensed 
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with sufficient accuracy at short times. A possible 

solution would be to couple the TSSP (i.e., the Schapery 

model) with the TTSP, or in other words accelerate the time 

scale using both stress and temperature. This approach was 

not used in the present study, but is worthy of further 

consideration. For this study it was decided to treat data 

obtained at stress levels less than or equal to 15.5 MPa as 

linear data, and treat data obtained at the higher stress 

levels as nonlinear data. 

Another factor which complicated the analysis was that 

complete recovery was not observed following each test, 

indicating an accumulation of damage within the test 

specimen. The permanent non-recoverable strains recorded 

for the 90-deg specimen are shown in Figure 5.7. As 

previously discussed this problem was also encountered by 

Hiel [22], and was treated as an offset error in the 

recovery data. In the present case the effects of permanent 

strain were investigated by comparing the results of five 

separate analyses. The linear viscoelastic parameters A , 

C, and n were first determined using the linear creep data 

and the FINDLEY program. Recall that the sensitivity 

analysis presented in Chapter IV indicates this to be the 

best approach for calculating the power law exponent n. 

Next, A , C, and n were determined using the SCHAPERY 

program and linear creep and uncorrected recovery data. That 



155 

CM 
CM 

0 

(B O   
D_ OJ 
2: 

to 0 
00 
<u 
s- 
+J 
t/) CO — 

r— 
Q- 
O) 
CD 0 _ 
i- 
0 

1X> — 

0 — 

<* — 0 - 

CM 0 

_JC> 
0 

1 1 1 ! 
o 
CNJ 

o 
o 

o 
CO 

o o o 
CM 

(uL/ULrt)  ULBa:;s auaueuijad 

0 >> 
in S- 
CM O) 
CO > 

0 
tJ 
0) 

0 Q. 
0 0) 
0 0) 
00 S- 

^^ 0 
-r— ^*  
CO CL 
Q. O) —^ O) 

0 s_ 
LO LO 0 
1^ LO 
CM OJ a; 

S- -M 
+-> 3 
00 

Q. s: 
0 0) 
0 a; 0 
LO s- CM 
CM 0 

0 
CO 

0 OJ 
un -C 
CM ■(->   to 
CM 

CD  0) 

0 cu 
0 r—    CL 
0 r-  00 
0 0 
CM 

rd
ed
 
F 

0
/
5
2
0
8
 

0 0 0 
on 0 00 
r^ OJ I— 

ai
ns
 
R 

0-
De

g 

0 s_ en 
0 +-> 
LO LT)    CD 

a
n
e
n
t
 

s 
Us

in
 

0 E -»-> 
a^ S-   1/1 
C\J O)   0) 

re
 
6.

7:
 
P T 

en 



156 

is, the accumulated damage was not accounted for in this 

second analysis and the recovery data used contained an 

"offset error". This analysis is included to illustrate the 

detrimental effects of such errors on the viscoelastic 

analysis. In the third and fourth analyses attempts were 

made to account for the accumulated damage within the linear 

recovery data. Two approaches were used, which will be 

referred to as "Method 1" and "Method 2". Finally, the 

remaining nonlinear parameters g^, g,, ^2' ^^^ ^o were 

determined using nonlinear data and the SCHAPERY program. 

Analysis Using Creep Data 

In this section, the results obtained using the program 

FINDLEY will be presented. The creep data used were 

obtained at stress levels of 10.5, 12.1, 13.9, and 15.6 MPa 

(1528, 1748, 2020, and 2263 psi). Note that the creep data 

was not corrected for any permanent strain error. The 

values obtained for A , C, and n are shown in Figure 6.8. 

The average value and standard deviation for each parameter 

were 

A  = 0.1.062 + 0.00037 ( X 1/GPa) 
o — 

= 0.7321 + 0.00252 ( X lO'Vpsi) 

C  = 0.00136 + 0.00016 ( X 1/GPa-min^) 

= 0.009372 + 0.00111 ( X lO'^/psi-min^) 

n = 0.289 + 0.0158 
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Recall that all three of these values are expected to remain 

constant with stress. Based upon the analysis presented in 

Chapter V, it was hoped that the test cycle selected would 

result in an accuracy in n ranging from -5.1% to +4.8% of 

the actual value. The standard deviation will be used as an 

indication of accuracy; thus possible experimental error in 

the value obtained for n is j^5.5%. Therefore, the expected 

accuracy in n was not quite attained. Admittedly, neither 

the number of tests nor the number of stress levels used are 

of a statistically valid sample size. Nevertheless, these 

results exhibit considerably less scatter than those 

obtained using a different creep cycle [21]. The possible 

error in C (shown in Chapter IV to be less important than 

errors in n) is JH11.8%, while the possible error in A is 

10.3%. 

Analysis With Uncorrected Recovery Data 

The A ,  C, and n values obtained using the SCHAPERY 
o 

program and uncorrected recovery data are shown in Figure 

6.9. As indicated a very wide scatter in both C and n was 

encountered. This would be expected based upon the analysis 

described in Chapter IV, since the recovery data contains a 

large offset error due to accumulated damage. The average 

value and standard deviation for each parameter are 
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A = 0.1068 + 0.00048 ( X 1/GPa) 
o 

= 0.7363 + 0.00328 ( X 10"Vpsi) 

C = 0.000986 + 0.000286 ( X 1/GPa-min^) 

= 0.006816 + 0.001970 ( X 10"^/psi-min^) 

n = 0.342 + 0.0527 

The possible error in n and C are therefore +15.4% and 

+.28.9%,  respectively.   Note  that  the  estimate  for  A 

obtained using either FINDLEY or SCHAPERY is essentially 

equivalent, since in both cases A  is determined using the 

creep data. 

Analysis With Recovery Data Corrected Using Method 1 

In this analysis, the accumulated damage recorded 

following each test was subtracted from the recovery data. 

This approach was used by Hiel [22], and will be referred to 

as Method 1, to distinguish it from an alternate procedure 

described in the next paragraph. The A^, C, and n values 

calculated using this approach are presented in Figure 6.10. 

The average values and standard deviations are 

A  = 0.1057 + 0.000398 ( X 1/GPa) 
o — 

= 0.7288 + 0.002746 ( X 10"^/psi) 

C  = 0.001813 + 0.0004186 ( X 1/GPa-min") 

= 0.0125 + 0.002886 ( X 10"^/psi-min^) 

n = 0.257 + 0.0258 



161 

anLBA 
CTi 

O 

CO 

d o 
1^ 

o 

T 

a. 
CO 

CO 
1/1 
(U 
s- 

4-> 
00 

O) 
0) OJ 3 
3 3 r— 

r— r— (O 
rtJ Its > > > 
c o ■< 

<u O) cu 
en CD en 
fO nS (O 
s- S_ s- 
(U O) O) 
> > > 

■< eC =c 

CM I 1 

(C 
03 <t3 +-> 

■M +-> « 
(rt (O O 
Q Q 

o   n   < 

C3^ 

O 
m 
CM 
CM 

O 
o 
o 
CM 

Q. 

to 

s- 
+-> 

o o 
Ln 

Lf) 
oo 

o 
CO 

o 
CM 

O 
—' LD 
Lf)  CM 

O 

8n[BA u 

CO 
r— 
o 
CD 

o 
o 

o 
CM 

O 

o 
an LBA 3 

o 

o 
o 
CD 

CO 
O 
o 

n3 
S_ 
CD 
o 
s- 

D- 

O) 

CD 
C 

-o 
n3 

CO 
S- 
0) 
+J p— 
O) 
E T3 
03 O 
S- -C 
n3 +-> 
Q-   OJ 

o 
•I-  en 

CO •!— 
IB   CO 

i- 
O 

o -a 
o <u 
(/) +-> 

•r-    O 
> <u 

s- 
s- s- 
03 O 
O) tj 

•r- re 
_I +J 

re 
O) Q 

+-> >1 
s- 
(1) 
> 
o 
o 

-o  <P 

c 
•1- TD 
re c 

+-> re 
o :•- 
ISI LU 
CU Q- 
3 < 

I— m 
re c_) 
> oo 

vo 

OJ 
s- 
3 
CD 



162 

The possible error in n and C for this case are +10.0% and 

±23.1%, respectively. Thus, correcting the recovery data by 

Method 1 reduced the scatter in n and C, but not to the 

levels obtained by using the creep data. 

Analysis With Recovery Data Corrected Using Method 2 

Note that since the response is assumed to be linear eq. 

3.4 can be used to generate an analytic recovery curve based 

upon the creep response. That is, the C and n values 

obtained using the creep data (C = 0.009372; n = 0.289) can 

be substituted into eg. 3.4 to obtain an expression for the 

expected recovery strain at any time t. Based upon this 

approach, the recovery curve expected at a stress level of 

15.6 MPa is compared with the uncorrected and corrected 

recovery data in Figure 6.11. It would appear from this 

figure that the difficulty lies in an inaccurate permanent 

strain measurement; i.e., the correction used to account for 

accumulated damage was too severe, causing the corrected 

recovery strains to "overshoot" the expected recovery curve. 

Similar calculations indicated an overshoot had occured at 

all stress levels. The discrepancy between expected 

recovery strains and corrected recovery strains was on the 

order of 5-15 uin/in in all cases. While this is a 

relatively small error, it has been demonstrated in Chapter 
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IV that errors of this magnitude severly distort the results 

obtained using recovery data. 

These considerations gave rise to a second approach for 

correcting the recovery strain, which was to simply adjust 

the measured data so as to match with the expected recovery 

response as closely as possible. This is not proposed as a 

valid experimental technique, since it requires a priori 

knowledge of the recovery response. The intent is rather to 

determine whether the measured recovery data can be "forced" 

to agree with the results obtained from creep. This 

procedure will be referred to as Method 2. The optimum 

offset shift of the recovery data was determined as follows. 

The expected recovery response at each stress level was 

calculated and subtracted from the measured strain at each 

point in time. The difference was defined as an offset 

error for that point in time. The average offset error over 

the 120 minute recovery period was then calculated for each 

stress level and subtracted from the recovery data as 

before. The resulting fit between predicted and corrected 

recovery strains is illustrated in Figure 6.12 for a stress 

level of 15.6 MPa. Similar results were obtained at all 

stress levels. Casual inspection would suggest that a very 

good correlation between the C and n values calculated using 

creep and corrected recovery data would now be obtained. 

However,  the  correlation did not  improve  and  in  fact 
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slightly worsened. The A , C, and n values obtained are 

presented in Figure 5.13. The average values and standard 

deviations are 

A^ = 0.1062 + 0.000786 ( X 1/GPa) 

= 0.7324 + 0.00542 ( X 10"Vpsi) 

C  = 0.001426 + 0.000472 ( X 1/GPa-min^) 

= 0.00983 + 0.00325 ( X lO"Vpsi-min^) 

n = 0.295 + 0.0401 

The standard deviations indicate possible errors for n, C, 

and A^ of +13.5%, +33.2%, and +0.74%, respectively. 

The reasons for this rather suprising result are not 

clear, although by careful inspection of Figure 6.12 a 

potential explanation is suggested. Note that for times 

less than about 10 minutes the corrected recovery data 

points lie slightly below the predicted recovery curve, 

while at longer times the data points lie slightly above the 

predicted curve. This same pattern existed at the other 

stress levels. Thus, the experimental data points describe 

a slightly "flatter" curve than predicted by linear 

viscoelastic theory. This indicates slightly nonlinear 

behaviour, which could perhaps explain the erratic results 

obtained. Specifically, a flatter recovery curve indicates 

that the g^ parameter is greater than 1.0, as discussed in 

Chapter III.  This reasoning also implies that the recovery 
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response is more sensitive to nonlinear effects than is the 

creep response, since satisfactory results were obtained 

using the creep data and linear theory. This greater 

sensitivity to nonlinear effects in the recovery data has 

also been observed by Lou and Schapery [35]. 

Another possible contributing factor would be that the 

effects of accumulated damage have not been properly 

accounted for. Damage is presumably accumulated through the 

formation of voids and/or microcracks which form during the 

creep cycle. Such imperfections may occur immediately upon 

loading, or may develop gradually during the creep cycle. 

In this second case the shape of the creep curve may be 

altered due to damage accumulation, ultimately affecting the 

calculated values of C and n. Upon unloading, these voids 

and microcracks would tend to close and perhaps modify the 

shape of the recovery curve as well. The creep/creep 

recovery response would therefore depend upon some 

combination of viscoelastic, plastic, and fracture 

mechanisms. Erratic results may have been obtained because 

the Schapery theory does not account for these hypothesized 

plastic or fracture mechanisms. 

At the least, the above calculations indicate the 

extreme sensitivity of n and C to slight errors in the 

recovery strain data. This sensitivity tends to confirm the 

analysis presented in Chapter IV, where it was concluded 
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that stable values for A , C and n can best be obtained o 

using creep rather than recovery data. 

Calculation of the Nonlinear Parameters 

The final step in the characterization process was to 

calculate the nonlinearizing parameters g^, q,,    g2 / and a 

at stress levels greater than 15.6 MPa.  Specifically, these 

parameters were calculated at stress levels of 17.2, 19.0, 

and 20.7 MPa (2498, 2755, and 2997 psi).  A permanent strain 

following recovery was also recorded at these stress levels, 

so it was neccessary to correct for accumulated damage by 

subtracting the permanent strain from the recovery data 

(Method 1).  Note that since the response was nonlinear it 

was not possible to calculate an expected recovery response 

based solely upon the creep response, and hence it was not 

possible to use Method 2 of the previous section to analyze 

the data. 

The SCHAPERY program was used to obtain best-fit values 

for each parameter.  The results obtained for gQ and g^ are 

presented in Figure 6.14, as functions of both the applied 

normal stress and of the average matrix octahedral shear 

stress, t  ^. (The average matrix octahedral shear stress 
'  oct  ^ 

was discussed in Chapter III.) The g^ value was calculated 

as 1.0 at all stress levels. This implies that the elastic 

instantaneous response was linear at all stress levels and 
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that the nonlinear behaviour previously noted in Figure 6.5 

was due entirely to the viscoelastic response.  The g. 

values were somewhat erratic; a value of 1.278 was obtained 

at an applied stress level of 17.2 MPa, while values of 1.14 

and 1.17 were obtained at stress levels of 19.0 and 20.7 

MPa,  respectively.   The  results  of  Hiel  for  T300/934 

indicate that g^ is a gently increasing function of stress 

[22], so it was assumed that the g^ value obtained at 17.2 

MPa was in error and was not used in the analysis. 

Recall that an expression for g^ as a function of T 
1 oct 

was required in the lamination program VISLAP. Peretz and 

Weitzman [50] have characterized the g.. parameter for the 

structural adhesive FM-73 using an expression of the form 

g^(0) = 1.0 + S^ 
a 

^0 

2 

where S^ ,  S„,  and a       are material constants determined 1        z o 

experimentally. However, since FM-73 is a highly nonlinear 

material, the g^ values obtained by Peretz and Weitzman span 

a much wider range than in the present case, and the above 

expression was not considered compatible with the mildly 

nonlinear behaviour observed for T300/5208. Therefore the 

following simple bilinear relation was used 
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for T   < 6.43 MPa (5-1) 
oct — 

1.0 + 0.0875 (T   - 6.43), for T ^ > 6.43 MPa oct oct 

Equation 6.1 is shown as a dashed line in Figure 6.14. 

Values obtained for the g^ and a^ parameters are shown 

in Figure 6.15. No distinct pattern emerged for the g^ 

parameter. Although a similar variation in q^ with stress 

was observed by Hiel [22], it was not clear whether this 

deviation was due to some physical mechanism or due to 

experimental error. Therefore, g^ was set equal to 1.0 at 

all stress levels. The a value decreased dramatically 

after initiation of nonlinear behaviour. This distinctive 

pattern has also been observed by other researchers 

[22,35-37,50]. The a parameter was related to T^^^ using 

the exponential function, following the approach used by 

Peretz and Weitzman [50].  The equation used in VISLAP was 

a (T J   = i a    oct 

1.0   ,   for T   < 6.43 MPa '       oct — 
(6.2) 

^-0.247 (T   - 6.43)  ^^^ ^   ^ 6.43 MPa 
oct 

It might be noted that an exponential dependence of a^ with 

stress has received some theoretical justification [35]. 

Equation 6.2 is shown as a dashed line in Figure 6.15. 
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Tests of 10-deg Specimens 

The 10-deg tests were performed to characterize the 

viscoelastic response of T300/5208 to shear stress. 

Creep/creep recovery tests were performed at eleven shear 

stress levels ranging from 2.9 to 32.5 MPa (426 to 4715 

psi). It is well known that end constraints can severely 

distort the desired uniaxial stress field when testing off- 

axis tensile specimens, particularily near the specimen 

grips [60]. Therefore, the 10-deg specimens were 30 cm (12 

/ inches) in length, resulting in a grip-to-grip distance of 

approximately 23 cm (9.0 inches). The effective length-to- 

width ratio was thus 18, which is considered adequate for 

tensile testing. The 480/120 minute creep/creep recovery 

test cycle was again utilized, and strain data were recorded 

at the nominal times previously listed in Table 6.1. A 

3-element strain gage rosette was used to measure three 

independent normal strains. The rosette orientation has 

been noted in Figure 6.1. For the rosette/fiber orientation 

used, the shear strain Z^^ along the 10-deg fiber direction 

can be calculated using the strains measured by gages a, b, 

and c as 

y,^ = -0.598 t     -   0.684 E, + 1.282 t 
±A 3. iJ C 
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Note  that  a different  relationship  is  obtained if  an 

alternate  fiber  angle  or  an  alternate  rosette/fiber 

orientation is used [22,47].  The shear stress x^^   along the 

fiber direction is related to the applied normal stress a 

by 

^12 = -°-l^l °x 

It was found that for an applied tensile normal stress, 

gages a and b measured tensile (positive) strains, while 

gage c measured compressive (negative) strains.  Thus, both 

y^2  ^^"^  "^lo were  negative;  for  simplicity the  results 

obtained will be presented herein as positive values. 

Stress-strain curves obtained at 0.5 and 480 minutes 

during the creep cycle are presented in Figure 6.16. A 

comparison of Figs. 6.6 and 6.16 indicates that nonlinear 

effects were much more significant in the case of shear 

stress than for the case of normal stress. Apparent linear 

behaviour with shear was exhibited at the lowest three 

stress levels of 2.9, 6.1, and 8.8 MPa (426, 878, and 1279 

psi), while nonlinear behaviour was observed at higher 

stress levels. It can again be hypothesized that nonlinear 

behaviour would have been observed at stress levels less 

than 8.8 MPa if the creep response had been monitored for 

times greater than 480 minutes. Nevertheless, the data 

obtained at shear stress levels of 8.8 MPa or less were 
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treated as linear data, while data obtained at higher stress 

levels were treated as nonlinear data. 

Permanent strains apparently due to accumulated damage 

were again observed. The permanent strains recorded by each 

of the three gages are presented in Figure 5.17. As 

indicated a different permanent strain was recorded by each 

gage. The magnitude of permanent strain roughly reflects 

the magnitude of the transient response sensed by each gage. 

That is, gage c recorded both the largest transient response 

and the largest permanent strain, while gage b recorded both 

the smallest transient response and the smallest permanent 

strain. Note also that a large permanent strain was 

measured by gage c, even though this gage was subjected to 

compressive strains during the creep cycle. Since the 

formation of matrix voids and microcracks is not normally 

associated with compressive strain fields, the permanent 

strains observed cannot be attributed entirely to damage 

accumulation in the form of voids or microcracks. A 

permanent change in the matrix molecular structure must 

therefore have occurred during the creep cycle, as suggested 

by Hiel et al [22]. 

The shear data were analyzed using the conventional two- 

step process. First a linear analysis was performed using 

the data obtained at the lowest three stress levels, 

resulting in calculated values for the linear viscoelastic 
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parameters A , C, and n. The remaining nonlinear parameters 

were then calculated using the nonlinear data obtained at 

the higher stress levels. 

Linear Analysis 

A linear analysis was performed using the creep data 

obtained at shear stress levels of 2.9, 6.1, and 8.8 MPa. 

Unsatisfactory results were obtained for the lowest stress 

level of 2.9 MPa.  The C and n values calculated using this 

data set were 0.01297 X 1/GPa-min" and 0.083, respectively, 

which do not compare well with the results listed below, 

which were obtained at the other two stress levels.  This 

discrepancy was probably due to the very low viscoelastic 

response, since the total transient shear strain measured 

over the  480 minute  creep period was only  30 yin/in. 

Therefore, it was assumed that accurate measurement of C and 

n could not be obtained using this data set, and the above 

values were not used in the analysis. 

The average values for A , C, and n calculated using the 

creep data obtained at 6.1 and 8.8 MPa were 

A  = 0.1561 + 0.001115 ( X 1/GPa) 

= 1.0761 + 0.00769 ( X 10"^/psi) 

C  = 0.00332 + 0.000140 ( X 1/GPa-min^) 

= 0.0229 + 0.000962 ( X lO"Vpsi-min^) 

n  = 0.247 + 0.0214 
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Possible errors in the values for A^, C, and n are therefore 

+ 0.71%, J:4.20%, and +8.66%, respectively. Note that the 

desired error bound on n was not achieved. The reasons for 

the relatively high error bound are not clear, but may again 

be associated with the relatively low viscoelastic response 

at these stress levels. The data appear to be very uniform, 

and no permanent damage was recorded at these stress levels. 

In any case the nonlinear analysis presented below was 

successfully based upon these results. 

Nonlinear Analysis 

A nonlinear analysis was performed using data obtained 

at eight shear stress levels ranging from 11.8 to 32.5 MPa 

(1712 to 4715 psi). The recovery data were corrected by 

subtracting the permanent strains recorded at each stress 

level. The values obtained for the g^ and g^ parameters are 

presented in Figure 6.18, as functions of both the applied 

load and of the average matrix octahedral shear stress. The 

g^ parameter was found to deviate from a value of 1.0 at all 

shear stress levels greater than 14.7 MPa (2132 psi). This 

indicates that the nonlinear behaviour observed is due to 

both a nonlinear elastic response and a nonlinear 

viscoelastic response in shear. This is in contrast to the 

results for normal stresses, where g^ was found to be 1.0 at 
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all normal stress levels, i.e., the elastic response was 

linear at all normal stress levels. A bilinear fit of the 

g^ data for use with the VISLAP program resulted in 

^O^^oct^^ 

1.0 for T   < 12.05 MPa 
oct — 

,-3 1.0 + 5.48 X 10   (T   - 12.05), for x  ^ > 12.05 MPa 
oct oct 

The g, parameter was also found to be stress dependent, 

A bilinear fit of the g^ data resulted in 

^l(^oct> = 

'l.O   ,   for T   < 7.23 MPa oct — 

,-3 1.0 + 9.79 X 10 ^ (x  ^ - 7.23), for x  ^ > 7.23 MPa oct oct 

The bilinear curve fits of the g^ and g, parameters are 

shown in Figure 6.18 as solid and dashed lines, 

respectively. 

The results obtained for the g„ parameter are presented 

in Figure 5.19. This parameter was found to be most 

sensitive to shear stress, ranging from a value of 1.0 at 

linear stress levels to about 3.5 at a shear stress of 32.5 
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MPa (4715 psi).  The g^ data were also fit using a bilinear 

function, resulting in 

'Z^^oct^ = < 

1.0, for T   < 7.23 MPa '     oct — 

1.0 + 0.124 (T   - 7.23), for T   > 7.23 MPa 
oct oct 

This function is shown as a solid line in Figure 6.19. 

The results obtained for a  are presented in Figure 

6.20.  The data for a  exhibited considerable scatter, and 
a 

no truly distinctive pattern emerged. As previously noted 

the a function was expected to exhibit an exponential 

dependence with stress. Therefore, the data were 

characterized using the following exponential function 

a (T  J = a    oct 

1,0, for T   < 14,5 MPa 
oct — 

-0,0340 (T  ^ - 14,5)  .       . 1/ q Ml. e        oct       , for T  ^ > 14,5 MPa ^ '     oct 

The above relation is shown as a solid line in Figure 6.20, 
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VII. LONG TERM EXPERIMENTS 

One of the major objectives of this study was to obtain 

experimental measurements of the long-term creep compliance 

of composite laminates. In previous studies at VPI&SU, 

compliance measurements were obtained for a maximum time of 

lo'^ minutes (6.9 days). It was felt that measurements at 

longer times were required so as to provide a more rigorous 

check of the long-term predictions obtained via the 

accelerated characterization scheme described in previous 

chapters. The efforts to obtain these long-term 

measurements will be described in this chapter. 

Selection of the Laminate Layups 

Two distinct laminate layups were to be tested during 

the long-term tests. The laminates were selected such that 

the stress state applied to the individual plies would 

differ significantly, so as to produce two distinct 

viscoelastic responses. A constraint on laminate selection 

was imposed by the material shortages previously mentioned. 

Due to these shortages, all long-term specimens had to be 

fabricated from a single [0/30/-50/0]^ panel of T300/5208 

graphite-epoxy. This panel was fabricated in the VPI&SU hot 

press facility, using the same NARMCO RIGIDITE 5208 prepreg 

tape  and  heat/pressure  cycle  used  to  fabricate  the 
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unidirectional specimens. Different laminate layups could 

only be obtained by sawing specimens from the parent panel 

at various angles away from the 0-deg fiber directions. 

Thus, potential laminate layups for the tensile specimens 

were defined by an angle g ranging from 0 to 180 degrees, as 

depicted in Figure 7.1. 

To aid in laminate selection, an analysis of the 

potential layups was performed using conventional (elastic) 

CLT. The results of this analysis are presented in Figure 

7.2, where the transverse normal stress and shear stress 

induced in each ply as a function of the angle 3 are 

plotted. The laminate layups selected for testing are 

denoted by the dashed lines in Figure 7.2. The first was a 

[100/-50/40/100] laminate, or equivalently, a 

[-80/-50/40/-80] laminate. This laminate was selected 

because all plies were subjected to relatively high 

transverse normal and shear stresses, as indicated in Figure 

7.2. The [-80/-50/40/-80] laminate will be referred to as 

laminate "A". The second layup chosen was a [20/50/-40/20] 

laminate. This layup results in relatively high shear 

stresses in all plies but relatively low transverse normal 

stresses. The [20/50/-40/20] laminate will be referred to 

as laminate "B". 

Static tensile tests to failure at a temperature of 149C 

(300F)  were  conducted  for  both  laminates.   Ultimate 
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potential 
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Figure 7.1: Layup of [0/30/-50/0] Panel, 
Tensile Specimen Axis Defined 

Indicating Potential 
by Sawcut Angle B 
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strengths of 136 and 271 MPa (19550 and 39320 psi) were 

measured for laminates A and B, respectively. Thus, the 

ultimate strength of laminate B was approximately twice as 

high as that of laminate A. The long-term creep tests were 

conducted at stress levels of 75 and 155 MPa (11000 and 

23000 psi) for laminates A and B, respectively. These 

stress levels correspond to roughly 50% of the laminate 

static ultimate strengths. 

As mentioned in Chapter VI, a five-station creep frame 

was used during the long-term study. Hence it was possible 

to test five specimens concurrently. Three specimens of 

laminate A and two specimens of laminate B were tested. 

Drift Measurements 

The long-term specimens were strain gaged with gages 

mounted back-to-back, as described for the unidirectional 

specimens in Chapter VI. Strains were measured using a 

Vishay P-350 portable digital strain indicator and a SB-IK 

ten channel switch and balance unit. An initial concern was 

that electronic "drift" of the gage signal might occur over 

the 10 minute test period. Drift can result from a variety 

of factors, including a change in strain gage or leadwire 

resistance, a change in strain gage gage factor, or 

amplifier instabilities. Since the laminate creep rate was 

expected to be rather low at long times, it was possible 

that drift could mask the actual viscoelastic response at 
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long times. The effective drift rate was therefore 

monitored during testing by placing separate Wheatstone 

bridge "drift" circuits within three test ovens, immediately 

adjacent to the mechanically-loaded tensile specimens. The 

drift specimens were gaged and wired exactly as the tensile 

specimens. At the start of the creep test, the drift 

circuits were balanced to zero, and the output of each 

circuit was monitored throughout the test. 

Two of the three circuits indicated very low drift. 

After 10 minutes one had measured a total drift of 17 

Viin/in, while the second had measured 35 uin/in, indicating 

an average drift rate of 0.37 uin/in/day. The third drift 

circuit initially indicated a very low drift rate as well. 

However, after about 20000 minutes (5.5 days) substantially 

higher (and unreasonable) drift rates were observed. This 

third circuit finally failed after 57900 minutes (40 days). 

The final reading taken from this circuit was 734 yin/in, 

which was of the same magnitude as the total transient 

response measured until that time for the loaded specimens. 

Thus, it is concluded that the high drift rate indicated by 

this circuit was due to a faulty strain gage or solder 

joint, and the data obtained from this circuit were 

discarded. 

The two drift circuits which did survive the total test 

period indicated that drift might account for perhaps 20-50 
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yin/in of the transient response recorded over the 10 

minute period. On the other hand, the transient reponse was 

on the order of 1000 uin/in. The effects of drift were 

therefore estimated to be less than 5% of the transient 

response, and were neglected during the data reduction and 

analysis. 

Specimen Performance 

As described above, three specimens of layup A and two 

specimens of layup B were tested. After initiation of the 

long-term tests, two of the specimens of layup A apparently 

failed, the first after 14960 minutes (10.4 days) and the 

second after 45915 minutes (32.6 days). Since the ovens are 

not equipped with windows, it was not possible to view the 

specimens from outside of the test ovens. It was also 

undesirable to open the ovens for inspection since the other 

tests would likely be disturbed.  Therefore, the "failed" 
5 

specimens were left undisturbed for the entire 10  minute 

testing period.  However, upon completion of the test it was 

discovered that these specimens had not failed but rather 

had merely slipped out of the upper specimen grips.  In 

retrospect, it would have been advisable to use pins through 

the grips and specimens to prevent such slippage.  Pins were 

used to prevent slippage of the B specimens, since these 

were tested at a much higher stress level.  Short-term tests 

had been conducted at the specimen A stress level (76 MPa) 
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and no slipping had been observed.  Therefore, slippage was 

not expected. 

The third A specimen remained loaded for the entire 10 

minute test period, but the strain gage circuit for this 

specimen failed after 34895 minutes (24.2 days). Reasonable 

strain measurements were obtained for this specimen until 

shortly before gage failure. Inspection following test 

completion revealed that the solder joint bonding the 

preattached leadwire ribbon to the gage tab had,failed. 

Due to these mechanical and electrical difficulties, 

results for the A laminate were obtained for a maximum time 

of 46915 minutes. While this was far short of the intended 

10 minute test period, it was still a major increase in 

previous long-term test times. 

Data for the two B laminates were obtained for the 

entire test period. Deformation of the B specimens occurred 

in a smooth and uniform manner, with no indication of any 

gage failures or excessive gage drift. The measured results 

for both the A and B laminates will be compared to the long- 

term response predicted by the program VISLAP in the 

following chapter. 



VIII. COMPARISON BETWEEN PREDICTION AND MEASUREMENT 

In previous chapters, the accelerated viscoelastic 

characterization of unidirectional specimens of T300/5208 

graphite-epoxy was described. During characterization, a 

series of creep/recovery tests were performed at several 

stress levels and at a temperature of 149C {300F), using 

both 90-deg and 10-deg off-axis specimens. These short-term 

results may be used in conjunction with the lamination 

program VISLAP to provide predictions of the long-term 

viscoelastic response of T300/5208 composite laminates of 

arbitrary layup. To check the accuracy of these 

predictions, long-term creep tests were conducted using 

specimens with two distinct layups. Laminate A, consisting 

of a [-80/-50/40/-80] layup, was selected because for this 

layup all plies are subjected to relatively high transverse 

normal and shear stresses. Laminate B, consisting of a 

[20/50/-40/20] layup, was selected because for this layup 

all plies are subjected to relatively high shear stresses 

but relatively low transverse normal stresses. The ultimate 

strength of laminate B was slightly greater than twice that 

of laminate A. Both laminates A and B were tested at creep 

stress levels of approximately 50% of ultimate; laminate A 

was tested at 76 MPa (11,000 psi), while laminate B was 

tested at 156 MPa (23,000 psi).  The viscoelastic response 
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of laminate A was expected to be significantly greater than 

that of laminate B. 

The predicted and measured compliances for laminates A 

and B are presented in Figures 8.1 through 8.4. The 

comparison for laminate A is made in Figures 8.1 and 8.2, 

where the vertical compliance scale in Figure 8.2 is 

expanded relative to Figure 8.1, to provide a clear 

comparison between theory and experiment. The corresponding 

comparison for laminate B is presented in Figures 8.3 and 

8.4. The comparison is similar for both laminates, in that 

a reasonably accurate prediction of the instantaneous 

(elastic) response was obtained, but at increased times the 

predicted response falls below the measured response. For 

laminate A the average measured compliance at 14960 minutes 

(the longest time at which all three A laminates were still 

functional) was approximately 10% higher than predicted. 

Figure 8.1 indicates that at longer times the differences 

between the average and predicted response would have been 

greater still. For laminate B, the average measured 

compliance at 10 minutes was approximately 12% higher than 

predicted. 

Recall that a 480 minute creep time was used during the 

accelerated characterization tests using unidirectional 

specimens. The Schapery theory was applied to these data, 

and  in  each  case  the  predicted  and measured  response 
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compared favorably. Typical results have been presented in 

Figures 5.3-6.5. It had therefore been anticipated that a 

good comparison for the laminates would be achieved over at 

least this shorter time period. Inspection of Figs. 8.2 and 

8.4 indicates discrepancies between the slopes of the 

measured and predicted compliance curves even at short 

times, however. Although the magnitudes of the predicted 

and measured responses at short times are reasonably close, 

this simply reflects the accuracy of conventional (elastic) 

CLT. Thus, the error observed is mainly due to an 

inaccurate modeling of the laminate viscoelastic response. 

The long-term laminate tests were conducted using a five 

station creep frame which had been fabricated in-house. The 

short-term tests on the other hand were conducted using a 

commercially available single station ATS creep frame. The 

test ovens used with the five station frame were known to 

produce relatively high thermal gradients, as compared to 

the ATS test oven. Therefore, it was suspected initially 

that the long-term specimens had been subjected to test 

temperatures higher than the intended test temperature of 

149C, which could account for the discrepancies observed 

between predicted and measured response. However this is 

considered unlikely for two reasons. First, the oven 

control thermocouple was mounted to within about 0.64 cm 

(0.125  inch)  of the  strain gage  site  on each  of the 
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mechanically loaded specimens. Even if significant thermal 

gradients existed along the length of the specimens, the 

material in the vicinity of the strain gage site was 

maintained at a temperature very near 149C. Also, nominal 

specimen thicknesses were 0.10 cm (0.04 inch), and so 

significant through-thickness thermal gradients were 

unlikely. Secondly, there was little discrepancy between 

predicted and measured results in initial elastic response. 

If the long-term test temperature had been appreciably 

higher than desired, a poor comparison between predicted and 

measured elastic response would have been observed. 

Note that the measured viscoelastic response recorded 

for both laminates is very consistent and uniform from 

specimen to specimen. The experimental curves could be 

shifted up or down to form a distinct response curve for 

each laminate type. Discrepancies are due for the most part 

to small differences in the inital elastic response. This 

repeatable viscoelastic response from specimen to specimen 

as well as the very low strain gage drift rates previously 

noted tends to increase confidence in the measured results. 

Based upon these observations, it must be concluded that 

some mechanism impacting the viscoelastic response of 

composite laminates has not been properly accounted for in 

the VISLAP analysis. It is possible that the viscoelastic 

parameters  determined during  the  short-term  tests  were 
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calculated in error, causing discrepancies at long times. 

This would not explain the errors at short times, however. 

One portion of the present analysis which may be suspect 

is the manner in which the effects of biaxial stress fields 

have been accounted for. Recall that the average matrix 

octahedral shear stress has been used to account for such 

stress interactions, using a mechanics of materials approach 

to determine the average matrix stresses. Perhaps this 

approach is too simple to characterize the effects of the 

complex three-dimensional stress state which exists at the 

micromechanics level at all fiber/matrix interfaces. The 

problem may be further accentuated at interfaces between 

alternating plies within the composite laminate. 

Another area of concern is the accumulation of damage 

during the creep process, which has been observed during 

both the present study and in previous efforts [22]. 

Evidence suggests that this permanent damage is due to both 

the formation of voids and microcracks within the composite 

matrix material and permanent changes in the matrix 

molecular structure. It has not been possible to correct 

the unidirectional creep data for damage accumulation, 

although an attempt was made to correct the unidirectional 

recovery data by subtracting out any permanent strains 

recorded. A portion of the creep response is therefore due 

to viscoelastic mechanisms, while a portion is presumably 
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due to fracture mechanisms. This implies that the 

viscoelastic parameters calculated using the creep data may 

reflect to some extent the initial damage state of the 

specimen as well as the amount of damage accumulated during 

testing. This problem could be alleviated somewhat if the 

unidirectional specimens were mechanically conditioned prior 

to testing, but as previously noted this would not 

correspond to a practical situation. Furthermore, the 

damage which occurs in a unidirectional composite specimen 

is not necessarily representative of the damage which occurs 

in a composite laminate. Laminate damage may occur in 

various combinations of matrix cracking, fiber-matrix 

debonding, delamination between plies, or local fiber 

breakage. Many of these failure modes do not occur in 

unidirectional specimens. The type and extent of damage 

which occurs in a laminate depends upon stacking sequence, 

fabrication techniques, geometry, applied loads, and loading 

history [61,52]. Due to these effects, it may not be 

possible to characterize damage accumulation within a 

laminate based solely upon results obtained from 

unidirectional specimens. 

Finally, note that the VISLAP analysis is based upon 

CLT, with slight modification to account for viscoelastic 

behaviour. If the analysis is to be valid, the principal 

assumptions associated with CLT must be satisfied.  Namely, 
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the plane stress assumption and the Kirchoff hypothesis. 

Thus, interlaminar shear deformations are not considered in 

the VISLAP analysis. As a result, laminates with three or 

more fiber directions possess a theoretical upper bound on 

compliance, as pointed out by Dillard et al [22]. In 

practice, however, laminates may undergo significant 

viscoelastic interlaminar shear deformations and 

subsequently may have no upper bound on compliance. This 

shortcoming could be resolved if some method to integrate 

interlaminar shear deformations within lamination theory 

could be formulated. The only alternative would be to 

discard the present approach and utilize a more 

sophisticated (and more expensive) method such as the finite 

element technique. 



IX. SUMMARY AND RECOMMENDATIONS 

Summary of Results 

In this study an accelerated characterization technique 

was applied to T300/5208 graphite-epoxy composites. The 

study utilized a characterization procedure previously 

developed at VPI&SU. The basic concept is to use short-term 

test data, obtained from unidirectional specimens, to 

predict the long-term behaviour of composite laminates of 

arbitrary layup. Previous efforts had focused exclusively 

on the T300/934 graphite-epoxy material system. Therefore, 

the T300/5208 material system was selected for use in the 

present study, to determine if the accelerated 

characterization scheme could be confidently applied to 

materials other than T300/934. Improvements in the 

characterization scheme were also implemented during this 

study, in the form of a more accurate viscoelastic 

compliance model and in improved short-term testing 

procedures. 

Each of the six program objectives listed in Chapter I 

were achieved during the course of the study. First, the 

Schapery nonlinear viscoelastic theory was integrated with 

the accelerated characterization scheme. A recursive 

relationship was developed, based upon the Schapery theory. 
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This expression gives the nonlinear viscoelastic response at 

time t., following j-steps in stress. This allows 

calculation of the nonlinear viscoelastic response to a 

complex uniaxial load history. The complex load may be 

approximated to any degree of accuracy by using discrete 

steps in stress. The recursive relationship was integrated 

with an existing lamination computer program called VISLAP, 

allowing predictions of the long-term viscoelastic response 

of composite laminates. 

The impact on long-term predictions induced by an error 

in one of the seven Schapery viscoelastic parameters was 

also investigated. The approach used was to calculate the 

predicted response using an "incorrect" value for the 

parameter of interest but the "correct" value for all other 

parameters. The prediction calculated using the erroneous 

parameter was then compared with the exact response. It was 

concluded that in the present case long-term predictions 

were most sensitive to error in the power law exponent n. 

It was noted however that this conclusion is contingent upon 

the length of prediction desired as well as the viscoelastic 

properties of the specific material being investigated. The 

above conclusion was based upon typical properties of 

T300/5208 and a maximum prediction time of 10 minutes. It 

is recommended that a similar analysis be performed if a 

different material is studied or if different prediction 
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times are required.  However, as a general rule, long-term 

predictions are most sensitive to errors in n. 

The data reduction techniques used to calculate the 

linear viscoelastic parameters A , C and n were also 

investigated. It was shown that in theory these parameters 

can be calculated using either linear creep or linear 

recovery data, i.e., the use of either creep or recovery 

data is theoretically equivalent. Consideration was then 

given to the type of experimental strain measurement errors 

likely to occur in practice. It was found that the power 

law exponent was sensitive to even small offset errors in 

recovery data, but insensitive to offset errors in creep 

data. Small offset errors in the recovery data were 

considered likely due to damage accumulation and slight 

strain gage zero drift during the creep cycle. Therefore, 

it was concluded that the linear viscoelastic parameters 

should be calculated using creep data. 

A short-term creep/recovery testing cycle was selected 

which was keyed towards an accurate measure of the power law 

parameter n. The testing cycle was based upon strain gage 

accuracy and sensitivity, the expected viscoelastic response 

for T300/5208 at 149C, and a specified prediction accuracy 

of +10% at the maximum prediction time of 10 minutes. 

These considerations led to the selection of a 480/120 

minute creep/recovery testing cycle.  The concepts used in 
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selecting this cycle were also collected and listed as a 

proposed standard test selection procedure. This standard 

process should provide useful guidelines to the researcher 

studying a viscoelastic material which has not been 

previously investigated. 

The 480/120 minute creep/recovery cycle was used to 

characterize the viscoelastic response of unidirectional 

specimens of T300/5208 graphite-epoxy. The viscoelastic 

response to transverse normal stress was characterized using 

90-deg off-axis tensile specimens, while the response to 

shear stress was characterized using 10-deg off-axis tensile 

specimens. For the transverse case, nonlinear behaviour was 

observed at stress levels greater than about 15.6 MPa (2250 

psi). However, it was also noted that nonlinear behaviour 

may occur at lower stress levels but may not become apparent 

for very long times. For the case of shear stress nonlinear 

behaviour was observed at stress levels greater than about 

8.8 MPa (1279 psi). Nonlinear effects were much more 

significant in the case of shear stress than in the case of 

transverse normal stress. 

Predictions  obtained using  the  program VISLAP  were 

compared to measured results  for two distinct  laminate 

layups.  Comparisons were made for a maximum time of 10 

minutes.   It  was  found  that  although  the  predicted 

instantaneous response compared well with measured results. 
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the predicted viscoelastic response was significantly less 

than the measured viscoelastic response. Thus, the 

predicted response was non-conservative. The discrepancy 

between theory and experiment is believed to be due to an 

insufficient modeling of stress interaction effects within 

individual plies, to damage accumulation within individual 

plies, and/or to interlaminar shear deformations which 

develop during the viscoelastic creep process. 

Although the comparison between theory and experiment 

obtained during this study is far from exact, it is believed 

that the fundamental approach used is valid. The 

accelerated characterization of composite laminates is a 

difficult problem, involving elements of lamination theory, 

nonlinear viscoelasticity, and fracture mechanics, among 

others. Accelerated characterization is an important 

research topic, however, due to the potential long-term 

viscoelastic response of composite laminates. A variety of 

load-bearing structural components fabricated from 

composites are being introduced into the marketplace. It is 

therefore important that the long-term viscoelastic response 

of composites be well understood and anticipated at the 

design stage. 

Recommendations 

A major question during application of the Schapery 
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theory in the present study was how to account for permanent 

damage.  Damage has been attributed at least in part to the 

formation of voids and microcracks in the composite matrix 

material during creep.  These voids and microcracks are in 

turn due in part to the highly heterogeneous nature of 

composites  at  the micromechanics  level.   Complex  three 

dimensional stress states exist near fiber-matrix interfaces 

and near free edges, resulting in matrix cracks at applied 

stress levels far below the effective ultimate strength of 

the composite.  It is believed that problems with damage 

accumulation  could  be  minimized by  using  a  "simpler" 

material,   i.e.,   a  homogeneous,   initially  isotropic, 

nonlinear viscoelastic material.  Also note that in the 

present study the validity of the long-term predictions of 

the Schapery theory has been obscured since the Schapery 

results were not used directly but rather were combined 

using lamination theory to predict the long-term response of 

a laminate.  Therefore, it is suggested that portions of 

this  study  be  repeated  with  a   "simple"  material. 

Specifically, it is suggested that the Schapery analysis be 

applied as described herein to a homogeneous viscoelastic 

material, e.g., polycarbonate,  and compared with long-term 

measurements.   Such a study would indicate the level of 

accuracy  possible   using   accelerated  characterization 

techniques,  and  if  successful  would  confirm  that  the 
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difficulties in long-term prediction encountered herein were 

due to the laminate analysis and not due to the short-term 

characterization process. Alternatively, the Schapery 

theory could be validated by predicting the response to a 

time-dependent loading history such as a ramp loading 

function or a low-frequency sinusoidal loading function. 

Response to such a load history could be approximated using 

the recursive relationship presented herein (eq. 3.10), or 

by integrating the Schapery single-integral expression (eq. 

3.1) directly. If this latter approach were used a closed- 

form solution to eq. 3.1 may not be obtainable, requiring 

numerical integration. Peretz and Weitsman have used this 

approach in their studies on FM-73 [50]. 

In the present study the average matrix octahedral shear 

stress, T  ^, has been used to account for the effects of 
oct 

biaxial stress states on the viscoelastic response, where 

X    was calculated using a mechanics of materials model, 
oct 

Although this approach has been used in previous studies 

[21,35], to the author's knowledge the validity of this 

model has not been confirmed. It is suggested that creep 

tests be conducted using a biaxial loading state, e.g., 

static loads applied both parallel and perpendicular to the 

fiber direction. Although biaxial loading would be more 

difficult to apply than uniaxial loads, the test results 

would  directly  prove  or  disprove  the  average  matrix 
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octahedral shear stress model. An alternate approach would 

be to use uniaxial test results for several different off- 

axis tensile specimens. In this case, the ratio of the 

loads applied parallel and perpendicular to the fibers is 

fixed by the specimen fiber angle. Although these tests 

would be much easier to perform than an externally applied 

biaxial load test, the selection of load ratios would be 

somewhat restricted. 

A final recommendation involves possible interlaminar 

shear deformations which may occur during the viscoelastic 

creep process. A finite element analysis should be 

conducted for a few laminates to determine the contribution 

to creep due to interlaminar shear strains. If interlaminar 

effects are appreciable these must be incorporated into the 

CLT analysis. Otherwise, the relatively simple and 

inexpensive analysis possible using VISLAP must be replaced 

with a more complex and expensive procedure, probably based 

upon a finite element analysis of each laminate considered. 
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